ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq1d GIF version

Theorem oteq1d 3717
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
oteq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
oteq1d (𝜑 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)

Proof of Theorem oteq1d
StepHypRef Expression
1 oteq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 oteq1 3714 . 2 (𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
31, 2syl 14 1 (𝜑 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  cotp 3531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-ot 3537
This theorem is referenced by:  oteq123d  3720
  Copyright terms: Public domain W3C validator