HomeHome Intuitionistic Logic Explorer
Theorem List (p. 38 of 135)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3701-3800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempreqr2g 3701 Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the second elements are equal. Closed form of preqr2 3703. (Contributed by Jim Kingdon, 21-Sep-2018.)
((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵))
 
Theorempreqr1 3702 Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)
 
Theorempreqr2 3703 Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 5-Aug-1993.)
𝐴 ∈ V    &   𝐵 ∈ V       ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)
 
Theorempreq12b 3704 Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
 
Theoremprel12 3705 Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       𝐴 = 𝐵 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷})))
 
Theoremopthpr 3706 A way to represent ordered pairs using unordered pairs with distinct members. (Contributed by NM, 27-Mar-2007.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       (𝐴𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theorempreq12bg 3707 Closed form of preq12b 3704. (Contributed by Scott Fenton, 28-Mar-2014.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
 
Theoremprneimg 3708 Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
(((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
 
Theorempreqsn 3709 Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵𝐵 = 𝐶))
 
Theoremdfopg 3710 Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
 
Theoremdfop 3711 Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
 
Theoremopeq1 3712 Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
 
Theoremopeq2 3713 Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
 
Theoremopeq12 3714 Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.)
((𝐴 = 𝐶𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
 
Theoremopeq1i 3715 Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
𝐴 = 𝐵       𝐴, 𝐶⟩ = ⟨𝐵, 𝐶
 
Theoremopeq2i 3716 Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
𝐴 = 𝐵       𝐶, 𝐴⟩ = ⟨𝐶, 𝐵
 
Theoremopeq12i 3717 Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
𝐴 = 𝐵    &   𝐶 = 𝐷       𝐴, 𝐶⟩ = ⟨𝐵, 𝐷
 
Theoremopeq1d 3718 Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
 
Theoremopeq2d 3719 Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
 
Theoremopeq12d 3720 Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
 
Theoremoteq1 3721 Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
 
Theoremoteq2 3722 Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)
 
Theoremoteq3 3723 Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩)
 
Theoremoteq1d 3724 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
 
Theoremoteq2d 3725 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)
 
Theoremoteq3d 3726 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩)
 
Theoremoteq123d 3727 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)    &   (𝜑𝐸 = 𝐹)       (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)
 
Theoremnfop 3728 Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
𝑥𝐴    &   𝑥𝐵       𝑥𝐴, 𝐵
 
Theoremnfopd 3729 Deduction version of bound-variable hypothesis builder nfop 3728. This shows how the deduction version of a not-free theorem such as nfop 3728 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)       (𝜑𝑥𝐴, 𝐵⟩)
 
Theoremopid 3730 The ordered pair 𝐴, 𝐴 in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.)
𝐴 ∈ V       𝐴, 𝐴⟩ = {{𝐴}}
 
Theoremralunsn 3731* Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.)
(𝑥 = 𝐵 → (𝜑𝜓))       (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑𝜓)))
 
Theorem2ralunsn 3732* Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.)
(𝑥 = 𝐵 → (𝜑𝜒))    &   (𝑦 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜓𝜃))       (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ (∀𝑦𝐴 𝜒𝜃))))
 
Theoremopprc 3733 Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
(¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
 
Theoremopprc1 3734 Expansion of an ordered pair when the first member is a proper class. See also opprc 3733. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
 
Theoremopprc2 3735 Expansion of an ordered pair when the second member is a proper class. See also opprc 3733. (Contributed by NM, 15-Nov-1994.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐵 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
 
Theoremoprcl 3736 If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
(𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theorempwsnss 3737 The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.)
{∅, {𝐴}} ⊆ 𝒫 {𝐴}
 
Theorempwpw0ss 3738 Compute the power set of the power set of the empty set. (See pw0 3674 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48 (but with subset in place of equality). (Contributed by Jim Kingdon, 12-Aug-2018.)
{∅, {∅}} ⊆ 𝒫 {∅}
 
Theorempwprss 3739 The power set of an unordered pair. (Contributed by Jim Kingdon, 13-Aug-2018.)
({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ⊆ 𝒫 {𝐴, 𝐵}
 
Theorempwtpss 3740 The power set of an unordered triple. (Contributed by Jim Kingdon, 13-Aug-2018.)
(({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∪ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}})) ⊆ 𝒫 {𝐴, 𝐵, 𝐶}
 
Theorempwpwpw0ss 3741 Compute the power set of the power set of the power set of the empty set. (See also pw0 3674 and pwpw0ss 3738.) (Contributed by Jim Kingdon, 13-Aug-2018.)
({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}}
 
Theorempwv 3742 The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
𝒫 V = V
 
2.1.18  The union of a class
 
Syntaxcuni 3743 Extend class notation to include the union of a class (read: 'union 𝐴')
class 𝐴
 
Definitiondf-uni 3744* Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of [TakeutiZaring] p. 16. For example, { { 1 , 3 } , { 1 , 8 } } = { 1 , 3 , 8 } . This is similar to the union of two classes df-un 3079. (Contributed by NM, 23-Aug-1993.)
𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
 
Theoremdfuni2 3745* Alternate definition of class union. (Contributed by NM, 28-Jun-1998.)
𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥𝑦}
 
Theoremeluni 3746* Membership in class union. (Contributed by NM, 22-May-1994.)
(𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
 
Theoremeluni2 3747* Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.)
(𝐴 𝐵 ↔ ∃𝑥𝐵 𝐴𝑥)
 
Theoremelunii 3748 Membership in class union. (Contributed by NM, 24-Mar-1995.)
((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
 
Theoremnfuni 3749 Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
𝑥𝐴       𝑥 𝐴
 
Theoremnfunid 3750 Deduction version of nfuni 3749. (Contributed by NM, 18-Feb-2013.)
(𝜑𝑥𝐴)       (𝜑𝑥 𝐴)
 
Theoremcsbunig 3751 Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.)
(𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremunieq 3752 Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴 = 𝐵 𝐴 = 𝐵)
 
Theoremunieqi 3753 Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.)
𝐴 = 𝐵        𝐴 = 𝐵
 
Theoremunieqd 3754 Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.)
(𝜑𝐴 = 𝐵)       (𝜑 𝐴 = 𝐵)
 
Theoremeluniab 3755* Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.)
(𝐴 {𝑥𝜑} ↔ ∃𝑥(𝐴𝑥𝜑))
 
Theoremelunirab 3756* Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.)
(𝐴 {𝑥𝐵𝜑} ↔ ∃𝑥𝐵 (𝐴𝑥𝜑))
 
Theoremunipr 3757 The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.)
𝐴 ∈ V    &   𝐵 ∈ V        {𝐴, 𝐵} = (𝐴𝐵)
 
Theoremuniprg 3758 The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.)
((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
 
Theoremunisn 3759 A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.)
𝐴 ∈ V        {𝐴} = 𝐴
 
Theoremunisng 3760 A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.)
(𝐴𝑉 {𝐴} = 𝐴)
 
Theoremdfnfc2 3761* An alternate statement of the effective freeness of a class 𝐴, when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016.)
(∀𝑥 𝐴𝑉 → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
 
Theoremuniun 3762 The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.)
(𝐴𝐵) = ( 𝐴 𝐵)
 
Theoremuniin 3763 The class union of the intersection of two classes. Exercise 4.12(n) of [Mendelson] p. 235. (Contributed by NM, 4-Dec-2003.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝐵) ⊆ ( 𝐴 𝐵)
 
Theoremuniss 3764 Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝐵 𝐴 𝐵)
 
Theoremssuni 3765 Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
 
Theoremunissi 3766 Subclass relationship for subclass union. Inference form of uniss 3764. (Contributed by David Moews, 1-May-2017.)
𝐴𝐵        𝐴 𝐵
 
Theoremunissd 3767 Subclass relationship for subclass union. Deduction form of uniss 3764. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)       (𝜑 𝐴 𝐵)
 
Theoremuni0b 3768 The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.)
( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})
 
Theoremuni0c 3769* The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.)
( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
 
Theoremuni0 3770 The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Reproved without relying on ax-nul by Eric Schmidt.) (Contributed by NM, 16-Sep-1993.) (Revised by Eric Schmidt, 4-Apr-2007.)
∅ = ∅
 
Theoremelssuni 3771 An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.)
(𝐴𝐵𝐴 𝐵)
 
Theoremunissel 3772 Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.)
(( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
 
Theoremunissb 3773* Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.)
( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
 
Theoremuniss2 3774* A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. (Contributed by NM, 22-Mar-2004.)
(∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
 
Theoremunidif 3775* If the difference 𝐴𝐵 contains the largest members of 𝐴, then the union of the difference is the union of 𝐴. (Contributed by NM, 22-Mar-2004.)
(∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 (𝐴𝐵) = 𝐴)
 
Theoremssunieq 3776* Relationship implying union. (Contributed by NM, 10-Nov-1999.)
((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → 𝐴 = 𝐵)
 
Theoremunimax 3777* Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.)
(𝐴𝐵 {𝑥𝐵𝑥𝐴} = 𝐴)
 
2.1.19  The intersection of a class
 
Syntaxcint 3778 Extend class notation to include the intersection of a class (read: 'intersect 𝐴').
class 𝐴
 
Definitiondf-int 3779* Define the intersection of a class. Definition 7.35 of [TakeutiZaring] p. 44. For example, { { 1 , 3 } , { 1 , 8 } } = { 1 } . Compare this with the intersection of two classes, df-in 3081. (Contributed by NM, 18-Aug-1993.)
𝐴 = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
 
Theoremdfint2 3780* Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.)
𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
 
Theoreminteq 3781 Equality law for intersection. (Contributed by NM, 13-Sep-1999.)
(𝐴 = 𝐵 𝐴 = 𝐵)
 
Theoreminteqi 3782 Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.)
𝐴 = 𝐵        𝐴 = 𝐵
 
Theoreminteqd 3783 Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.)
(𝜑𝐴 = 𝐵)       (𝜑 𝐴 = 𝐵)
 
Theoremelint 3784* Membership in class intersection. (Contributed by NM, 21-May-1994.)
𝐴 ∈ V       (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
 
Theoremelint2 3785* Membership in class intersection. (Contributed by NM, 14-Oct-1999.)
𝐴 ∈ V       (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
 
Theoremelintg 3786* Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.)
(𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
 
Theoremelinti 3787 Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝐴 𝐵 → (𝐶𝐵𝐴𝐶))
 
Theoremnfint 3788 Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
𝑥𝐴       𝑥 𝐴
 
Theoremelintab 3789* Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
𝐴 ∈ V       (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
 
Theoremelintrab 3790* Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.)
𝐴 ∈ V       (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
 
Theoremelintrabg 3791* Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.)
(𝐴𝑉 → (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥)))
 
Theoremint0 3792 The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
∅ = V
 
Theoremintss1 3793 An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.)
(𝐴𝐵 𝐵𝐴)
 
Theoremssint 3794* Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.)
(𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
 
Theoremssintab 3795* Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
 
Theoremssintub 3796* Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.)
𝐴 {𝑥𝐵𝐴𝑥}
 
Theoremssmin 3797* Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.)
𝐴 {𝑥 ∣ (𝐴𝑥𝜑)}
 
Theoremintmin 3798* Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝐴𝐵 {𝑥𝐵𝐴𝑥} = 𝐴)
 
Theoremintss 3799 Intersection of subclasses. (Contributed by NM, 14-Oct-1999.)
(𝐴𝐵 𝐵 𝐴)
 
Theoremintssunim 3800* The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.)
(∃𝑥 𝑥𝐴 𝐴 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13439
  Copyright terms: Public domain < Previous  Next >