HomeHome Intuitionistic Logic Explorer
Theorem List (p. 38 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3701-3800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtpnz 3701 A triplet containing a set is not empty. (Contributed by NM, 10-Apr-1994.)
𝐴 ∈ V       {𝐴, 𝐵, 𝐶} ≠ ∅
 
Theoremsnss 3702 The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
𝐴 ∈ V       (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵)
 
Theoremeldifsn 3703 Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.)
(𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))
 
Theoremssdifsn 3704 Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.)
(𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))
 
Theoremeldifsni 3705 Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.)
(𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴𝐶)
 
Theoremneldifsn 3706 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.)
¬ 𝐴 ∈ (𝐵 ∖ {𝐴})
 
Theoremneldifsnd 3707 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}))
 
Theoremrexdifsn 3708 Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.)
(∃𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝜑))
 
Theoremsnssg 3709 The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.)
(𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))
 
Theoremdifsn 3710 An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
 
Theoremdifprsnss 3711 Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵}
 
Theoremdifprsn1 3712 Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
(𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
 
Theoremdifprsn2 3713 Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
(𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
 
Theoremdiftpsn3 3714 Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
 
Theoremdifpr 3715 Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.)
(𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})
 
Theoremdifsnb 3716 (𝐵 ∖ {𝐴}) equals 𝐵 if and only if 𝐴 is not a member of 𝐵. Generalization of difsn 3710. (Contributed by David Moews, 1-May-2017.)
𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)
 
Theoremsnssi 3717 The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.)
(𝐴𝐵 → {𝐴} ⊆ 𝐵)
 
Theoremsnssd 3718 The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑𝐴𝐵)       (𝜑 → {𝐴} ⊆ 𝐵)
 
Theoremdifsnss 3719 If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6475. (Contributed by Jim Kingdon, 10-Aug-2018.)
(𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)
 
Theorempw0 3720 Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝒫 ∅ = {∅}
 
Theoremsnsspr1 3721 A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.)
{𝐴} ⊆ {𝐴, 𝐵}
 
Theoremsnsspr2 3722 A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
{𝐵} ⊆ {𝐴, 𝐵}
 
Theoremsnsstp1 3723 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
{𝐴} ⊆ {𝐴, 𝐵, 𝐶}
 
Theoremsnsstp2 3724 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
{𝐵} ⊆ {𝐴, 𝐵, 𝐶}
 
Theoremsnsstp3 3725 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
{𝐶} ⊆ {𝐴, 𝐵, 𝐶}
 
Theoremprsstp12 3726 A pair is a subset of an unordered triple containing its members. (Contributed by Jim Kingdon, 11-Aug-2018.)
{𝐴, 𝐵} ⊆ {𝐴, 𝐵, 𝐶}
 
Theoremprsstp13 3727 A pair is a subset of an unordered triple containing its members. (Contributed by Jim Kingdon, 11-Aug-2018.)
{𝐴, 𝐶} ⊆ {𝐴, 𝐵, 𝐶}
 
Theoremprsstp23 3728 A pair is a subset of an unordered triple containing its members. (Contributed by Jim Kingdon, 11-Aug-2018.)
{𝐵, 𝐶} ⊆ {𝐴, 𝐵, 𝐶}
 
Theoremprss 3729 A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)
 
Theoremprssg 3730 A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
 
Theoremprssi 3731 A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
 
Theoremprsspwg 3732 An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.)
((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
 
Theoremsssnr 3733 Empty set and the singleton itself are subsets of a singleton. Concerning the converse, see exmidsssn 4181. (Contributed by Jim Kingdon, 10-Aug-2018.)
((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵})
 
Theoremsssnm 3734* The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.)
(∃𝑥 𝑥𝐴 → (𝐴 ⊆ {𝐵} ↔ 𝐴 = {𝐵}))
 
Theoremeqsnm 3735* Two ways to express that an inhabited set equals a singleton. (Contributed by Jim Kingdon, 11-Aug-2018.)
(∃𝑥 𝑥𝐴 → (𝐴 = {𝐵} ↔ ∀𝑥𝐴 𝑥 = 𝐵))
 
Theoremssprr 3736 The subsets of a pair. (Contributed by Jim Kingdon, 11-Aug-2018.)
(((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶})
 
Theoremsstpr 3737 The subsets of a triple. (Contributed by Jim Kingdon, 11-Aug-2018.)
((((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
 
Theoremtpss 3738 A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
 
Theoremtpssi 3739 A triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
 
Theoremsneqr 3740 If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
𝐴 ∈ V       ({𝐴} = {𝐵} → 𝐴 = 𝐵)
 
Theoremsnsssn 3741 If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.)
𝐴 ∈ V       ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵)
 
Theoremsneqrg 3742 Closed form of sneqr 3740. (Contributed by Scott Fenton, 1-Apr-2011.)
(𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
 
Theoremsneqbg 3743 Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.)
(𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))
 
Theoremsnsspw 3744 The singleton of a class is a subset of its power class. (Contributed by NM, 5-Aug-1993.)
{𝐴} ⊆ 𝒫 𝐴
 
Theoremprsspw 3745 An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶))
 
Theorempreqr1g 3746 Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 3748. (Contributed by Jim Kingdon, 21-Sep-2018.)
((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵))
 
Theorempreqr2g 3747 Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the second elements are equal. Closed form of preqr2 3749. (Contributed by Jim Kingdon, 21-Sep-2018.)
((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵))
 
Theorempreqr1 3748 Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)
 
Theorempreqr2 3749 Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 5-Aug-1993.)
𝐴 ∈ V    &   𝐵 ∈ V       ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)
 
Theorempreq12b 3750 Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
 
Theoremprel12 3751 Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       𝐴 = 𝐵 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷})))
 
Theoremopthpr 3752 A way to represent ordered pairs using unordered pairs with distinct members. (Contributed by NM, 27-Mar-2007.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 ∈ V       (𝐴𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theorempreq12bg 3753 Closed form of preq12b 3750. (Contributed by Scott Fenton, 28-Mar-2014.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
 
Theoremprneimg 3754 Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
(((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
 
Theorempreqsn 3755 Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵𝐵 = 𝐶))
 
Theoremdfopg 3756 Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
 
Theoremdfop 3757 Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.)
𝐴 ∈ V    &   𝐵 ∈ V       𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
 
Theoremopeq1 3758 Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
 
Theoremopeq2 3759 Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
 
Theoremopeq12 3760 Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.)
((𝐴 = 𝐶𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
 
Theoremopeq1i 3761 Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
𝐴 = 𝐵       𝐴, 𝐶⟩ = ⟨𝐵, 𝐶
 
Theoremopeq2i 3762 Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
𝐴 = 𝐵       𝐶, 𝐴⟩ = ⟨𝐶, 𝐵
 
Theoremopeq12i 3763 Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
𝐴 = 𝐵    &   𝐶 = 𝐷       𝐴, 𝐶⟩ = ⟨𝐵, 𝐷
 
Theoremopeq1d 3764 Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
 
Theoremopeq2d 3765 Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
 
Theoremopeq12d 3766 Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
 
Theoremoteq1 3767 Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
 
Theoremoteq2 3768 Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)
 
Theoremoteq3 3769 Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
(𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩)
 
Theoremoteq1d 3770 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
 
Theoremoteq2d 3771 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐶, 𝐴, 𝐷⟩ = ⟨𝐶, 𝐵, 𝐷⟩)
 
Theoremoteq3d 3772 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩)
 
Theoremoteq123d 3773 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)    &   (𝜑𝐸 = 𝐹)       (𝜑 → ⟨𝐴, 𝐶, 𝐸⟩ = ⟨𝐵, 𝐷, 𝐹⟩)
 
Theoremnfop 3774 Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
𝑥𝐴    &   𝑥𝐵       𝑥𝐴, 𝐵
 
Theoremnfopd 3775 Deduction version of bound-variable hypothesis builder nfop 3774. This shows how the deduction version of a not-free theorem such as nfop 3774 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)       (𝜑𝑥𝐴, 𝐵⟩)
 
Theoremopid 3776 The ordered pair 𝐴, 𝐴 in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.)
𝐴 ∈ V       𝐴, 𝐴⟩ = {{𝐴}}
 
Theoremralunsn 3777* Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.)
(𝑥 = 𝐵 → (𝜑𝜓))       (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑𝜓)))
 
Theorem2ralunsn 3778* Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.)
(𝑥 = 𝐵 → (𝜑𝜒))    &   (𝑦 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜓𝜃))       (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥𝐴𝑦𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ (∀𝑦𝐴 𝜒𝜃))))
 
Theoremopprc 3779 Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
(¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
 
Theoremopprc1 3780 Expansion of an ordered pair when the first member is a proper class. See also opprc 3779. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
 
Theoremopprc2 3781 Expansion of an ordered pair when the second member is a proper class. See also opprc 3779. (Contributed by NM, 15-Nov-1994.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐵 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
 
Theoremoprcl 3782 If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
(𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theorempwsnss 3783 The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.)
{∅, {𝐴}} ⊆ 𝒫 {𝐴}
 
Theorempwpw0ss 3784 Compute the power set of the power set of the empty set. (See pw0 3720 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48 (but with subset in place of equality). (Contributed by Jim Kingdon, 12-Aug-2018.)
{∅, {∅}} ⊆ 𝒫 {∅}
 
Theorempwprss 3785 The power set of an unordered pair. (Contributed by Jim Kingdon, 13-Aug-2018.)
({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ⊆ 𝒫 {𝐴, 𝐵}
 
Theorempwtpss 3786 The power set of an unordered triple. (Contributed by Jim Kingdon, 13-Aug-2018.)
(({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∪ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}})) ⊆ 𝒫 {𝐴, 𝐵, 𝐶}
 
Theorempwpwpw0ss 3787 Compute the power set of the power set of the power set of the empty set. (See also pw0 3720 and pwpw0ss 3784.) (Contributed by Jim Kingdon, 13-Aug-2018.)
({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}}
 
Theorempwv 3788 The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
𝒫 V = V
 
2.1.18  The union of a class
 
Syntaxcuni 3789 Extend class notation to include the union of a class. Read: "union (of) 𝐴".
class 𝐴
 
Definitiondf-uni 3790* Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of [TakeutiZaring] p. 16. For example, {{1, 3}, {1, 8}} = {1, 3, 8}. This is similar to the union of two classes df-un 3120. (Contributed by NM, 23-Aug-1993.)
𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
 
Theoremdfuni2 3791* Alternate definition of class union. (Contributed by NM, 28-Jun-1998.)
𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥𝑦}
 
Theoremeluni 3792* Membership in class union. (Contributed by NM, 22-May-1994.)
(𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
 
Theoremeluni2 3793* Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.)
(𝐴 𝐵 ↔ ∃𝑥𝐵 𝐴𝑥)
 
Theoremelunii 3794 Membership in class union. (Contributed by NM, 24-Mar-1995.)
((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
 
Theoremnfuni 3795 Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
𝑥𝐴       𝑥 𝐴
 
Theoremnfunid 3796 Deduction version of nfuni 3795. (Contributed by NM, 18-Feb-2013.)
(𝜑𝑥𝐴)       (𝜑𝑥 𝐴)
 
Theoremcsbunig 3797 Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.)
(𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremunieq 3798 Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴 = 𝐵 𝐴 = 𝐵)
 
Theoremunieqi 3799 Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.)
𝐴 = 𝐵        𝐴 = 𝐵
 
Theoremunieqd 3800 Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.)
(𝜑𝐴 = 𝐵)       (𝜑 𝐴 = 𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >