ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq1 GIF version

Theorem oteq1 3767
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq1 (𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)

Proof of Theorem oteq1
StepHypRef Expression
1 opeq1 3758 . . 3 (𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
21opeq1d 3764 . 2 (𝐴 = 𝐵 → ⟨⟨𝐴, 𝐶⟩, 𝐷⟩ = ⟨⟨𝐵, 𝐶⟩, 𝐷⟩)
3 df-ot 3586 . 2 𝐴, 𝐶, 𝐷⟩ = ⟨⟨𝐴, 𝐶⟩, 𝐷
4 df-ot 3586 . 2 𝐵, 𝐶, 𝐷⟩ = ⟨⟨𝐵, 𝐶⟩, 𝐷
52, 3, 43eqtr4g 2224 1 (𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cop 3579  cotp 3580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-ot 3586
This theorem is referenced by:  oteq1d  3770
  Copyright terms: Public domain W3C validator