ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq1 GIF version

Theorem oteq1 3827
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq1 (𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)

Proof of Theorem oteq1
StepHypRef Expression
1 opeq1 3818 . . 3 (𝐴 = 𝐵 → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
21opeq1d 3824 . 2 (𝐴 = 𝐵 → ⟨⟨𝐴, 𝐶⟩, 𝐷⟩ = ⟨⟨𝐵, 𝐶⟩, 𝐷⟩)
3 df-ot 3642 . 2 𝐴, 𝐶, 𝐷⟩ = ⟨⟨𝐴, 𝐶⟩, 𝐷
4 df-ot 3642 . 2 𝐵, 𝐶, 𝐷⟩ = ⟨⟨𝐵, 𝐶⟩, 𝐷
52, 3, 43eqtr4g 2262 1 (𝐴 = 𝐵 → ⟨𝐴, 𝐶, 𝐷⟩ = ⟨𝐵, 𝐶, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  cop 3635  cotp 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-ot 3642
This theorem is referenced by:  oteq1d  3830
  Copyright terms: Public domain W3C validator