| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq2i | GIF version | ||
| Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
| Ref | Expression |
|---|---|
| preq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| preq2i | ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | preq2 3744 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐶, 𝐴} = {𝐶, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: opid 3874 funopg 5351 df2o2 6575 fzprval 10274 fz0to3un2pr 10315 fz0to4untppr 10316 fzo0to2pr 10419 fzo0to42pr 10421 2strstr1g 13150 setsvtx 15846 |
| Copyright terms: Public domain | W3C validator |