Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reximdv | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
Ref | Expression |
---|---|
reximdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
reximdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | reximdvai 2570 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 df-rex 2454 |
This theorem is referenced by: r19.12 2576 reusv3 4445 rexxfrd 4448 iunpw 4465 fvelima 5548 carden2bex 7166 prnmaddl 7452 prarloclem5 7462 prarloc2 7466 genprndl 7483 genprndu 7484 ltpopr 7557 recexprlemm 7586 recexprlemopl 7587 recexprlemopu 7589 recexprlem1ssl 7595 recexprlem1ssu 7596 cauappcvgprlemupu 7611 caucvgprlemupu 7634 caucvgprprlemupu 7662 caucvgsrlemoffres 7762 map2psrprg 7767 resqrexlemgt0 10984 subcn2 11274 bezoutlembz 11959 pythagtriplem19 12236 tgcl 12858 neiss 12944 ssnei2 12951 tgcnp 13003 cnptopco 13016 cnptopresti 13032 lmtopcnp 13044 blssexps 13223 blssex 13224 mopni3 13278 neibl 13285 metss 13288 metcnp3 13305 rescncf 13362 limcresi 13429 |
Copyright terms: Public domain | W3C validator |