| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximdv | GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
| Ref | Expression |
|---|---|
| reximdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| reximdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | reximdvai 2597 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: r19.12 2603 reusv3 4496 rexxfrd 4499 iunpw 4516 fvelima 5615 carden2bex 7270 prnmaddl 7576 prarloclem5 7586 prarloc2 7590 genprndl 7607 genprndu 7608 ltpopr 7681 recexprlemm 7710 recexprlemopl 7711 recexprlemopu 7713 recexprlem1ssl 7719 recexprlem1ssu 7720 cauappcvgprlemupu 7735 caucvgprlemupu 7758 caucvgprprlemupu 7786 caucvgsrlemoffres 7886 map2psrprg 7891 resqrexlemgt0 11204 subcn2 11495 bezoutlembz 12198 pythagtriplem19 12478 mplsubgfileminv 14334 tgcl 14408 neiss 14494 ssnei2 14501 tgcnp 14553 cnptopco 14566 cnptopresti 14582 lmtopcnp 14594 blssexps 14773 blssex 14774 mopni3 14828 neibl 14835 metss 14838 metcnp3 14855 mpomulcn 14910 rescncf 14925 limcresi 15010 plyss 15082 |
| Copyright terms: Public domain | W3C validator |