Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reximdv | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
Ref | Expression |
---|---|
reximdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
reximdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | reximdvai 2566 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: r19.12 2572 reusv3 4438 rexxfrd 4441 iunpw 4458 fvelima 5538 carden2bex 7145 prnmaddl 7431 prarloclem5 7441 prarloc2 7445 genprndl 7462 genprndu 7463 ltpopr 7536 recexprlemm 7565 recexprlemopl 7566 recexprlemopu 7568 recexprlem1ssl 7574 recexprlem1ssu 7575 cauappcvgprlemupu 7590 caucvgprlemupu 7613 caucvgprprlemupu 7641 caucvgsrlemoffres 7741 map2psrprg 7746 resqrexlemgt0 10962 subcn2 11252 bezoutlembz 11937 pythagtriplem19 12214 tgcl 12714 neiss 12800 ssnei2 12807 tgcnp 12859 cnptopco 12872 cnptopresti 12888 lmtopcnp 12900 blssexps 13079 blssex 13080 mopni3 13134 neibl 13141 metss 13144 metcnp3 13161 rescncf 13218 limcresi 13285 |
Copyright terms: Public domain | W3C validator |