| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximdv | GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
| Ref | Expression |
|---|---|
| reximdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| reximdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | reximdvai 2607 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: r19.12 2613 reusv3 4515 rexxfrd 4518 iunpw 4535 fvelima 5643 carden2bex 7312 prnmaddl 7623 prarloclem5 7633 prarloc2 7637 genprndl 7654 genprndu 7655 ltpopr 7728 recexprlemm 7757 recexprlemopl 7758 recexprlemopu 7760 recexprlem1ssl 7766 recexprlem1ssu 7767 cauappcvgprlemupu 7782 caucvgprlemupu 7805 caucvgprprlemupu 7833 caucvgsrlemoffres 7933 map2psrprg 7938 resqrexlemgt0 11406 subcn2 11697 bezoutlembz 12400 pythagtriplem19 12680 mplsubgfileminv 14537 tgcl 14611 neiss 14697 ssnei2 14704 tgcnp 14756 cnptopco 14769 cnptopresti 14785 lmtopcnp 14797 blssexps 14976 blssex 14977 mopni3 15031 neibl 15038 metss 15041 metcnp3 15058 mpomulcn 15113 rescncf 15128 limcresi 15213 plyss 15285 |
| Copyright terms: Public domain | W3C validator |