| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximdv | GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
| Ref | Expression |
|---|---|
| reximdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| reximdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | reximdvai 2630 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: r19.12 2637 reusv3 4550 rexxfrd 4553 iunpw 4570 fvelima 5684 carden2bex 7358 prnmaddl 7673 prarloclem5 7683 prarloc2 7687 genprndl 7704 genprndu 7705 ltpopr 7778 recexprlemm 7807 recexprlemopl 7808 recexprlemopu 7810 recexprlem1ssl 7816 recexprlem1ssu 7817 cauappcvgprlemupu 7832 caucvgprlemupu 7855 caucvgprprlemupu 7883 caucvgsrlemoffres 7983 map2psrprg 7988 resqrexlemgt0 11526 subcn2 11817 bezoutlembz 12520 pythagtriplem19 12800 mplsubgfileminv 14658 tgcl 14732 neiss 14818 ssnei2 14825 tgcnp 14877 cnptopco 14890 cnptopresti 14906 lmtopcnp 14918 blssexps 15097 blssex 15098 mopni3 15152 neibl 15159 metss 15162 metcnp3 15179 mpomulcn 15234 rescncf 15249 limcresi 15334 plyss 15406 umgrnloop0 15911 uhgr2edg 15998 |
| Copyright terms: Public domain | W3C validator |