| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximdv | GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
| Ref | Expression |
|---|---|
| reximdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| reximdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | reximdvai 2605 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: r19.12 2611 reusv3 4505 rexxfrd 4508 iunpw 4525 fvelima 5624 carden2bex 7279 prnmaddl 7585 prarloclem5 7595 prarloc2 7599 genprndl 7616 genprndu 7617 ltpopr 7690 recexprlemm 7719 recexprlemopl 7720 recexprlemopu 7722 recexprlem1ssl 7728 recexprlem1ssu 7729 cauappcvgprlemupu 7744 caucvgprlemupu 7767 caucvgprprlemupu 7795 caucvgsrlemoffres 7895 map2psrprg 7900 resqrexlemgt0 11250 subcn2 11541 bezoutlembz 12244 pythagtriplem19 12524 mplsubgfileminv 14380 tgcl 14454 neiss 14540 ssnei2 14547 tgcnp 14599 cnptopco 14612 cnptopresti 14628 lmtopcnp 14640 blssexps 14819 blssex 14820 mopni3 14874 neibl 14881 metss 14884 metcnp3 14901 mpomulcn 14956 rescncf 14971 limcresi 15056 plyss 15128 |
| Copyright terms: Public domain | W3C validator |