Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reximdv | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.) |
Ref | Expression |
---|---|
reximdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
reximdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | reximdvai 2575 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 ∃wrex 2454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-ral 2458 df-rex 2459 |
This theorem is referenced by: r19.12 2581 reusv3 4454 rexxfrd 4457 iunpw 4474 fvelima 5559 carden2bex 7178 prnmaddl 7464 prarloclem5 7474 prarloc2 7478 genprndl 7495 genprndu 7496 ltpopr 7569 recexprlemm 7598 recexprlemopl 7599 recexprlemopu 7601 recexprlem1ssl 7607 recexprlem1ssu 7608 cauappcvgprlemupu 7623 caucvgprlemupu 7646 caucvgprprlemupu 7674 caucvgsrlemoffres 7774 map2psrprg 7779 resqrexlemgt0 10995 subcn2 11285 bezoutlembz 11970 pythagtriplem19 12247 tgcl 13115 neiss 13201 ssnei2 13208 tgcnp 13260 cnptopco 13273 cnptopresti 13289 lmtopcnp 13301 blssexps 13480 blssex 13481 mopni3 13535 neibl 13542 metss 13545 metcnp3 13562 rescncf 13619 limcresi 13686 |
Copyright terms: Public domain | W3C validator |