ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuniin GIF version

Theorem iuniin 3946
Description: Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iuniin 𝑥𝐴 𝑦𝐵 𝐶 𝑦𝐵 𝑥𝐴 𝐶
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem iuniin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 r19.12 2613 . . . 4 (∃𝑥𝐴𝑦𝐵 𝑧𝐶 → ∀𝑦𝐵𝑥𝐴 𝑧𝐶)
2 vex 2776 . . . . . 6 𝑧 ∈ V
3 eliin 3941 . . . . . 6 (𝑧 ∈ V → (𝑧 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵 𝑧𝐶))
42, 3ax-mp 5 . . . . 5 (𝑧 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵 𝑧𝐶)
54rexbii 2514 . . . 4 (∃𝑥𝐴 𝑧 𝑦𝐵 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝑧𝐶)
6 eliun 3940 . . . . 5 (𝑧 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑧𝐶)
76ralbii 2513 . . . 4 (∀𝑦𝐵 𝑧 𝑥𝐴 𝐶 ↔ ∀𝑦𝐵𝑥𝐴 𝑧𝐶)
81, 5, 73imtr4i 201 . . 3 (∃𝑥𝐴 𝑧 𝑦𝐵 𝐶 → ∀𝑦𝐵 𝑧 𝑥𝐴 𝐶)
9 eliun 3940 . . 3 (𝑧 𝑥𝐴 𝑦𝐵 𝐶 ↔ ∃𝑥𝐴 𝑧 𝑦𝐵 𝐶)
10 eliin 3941 . . . 4 (𝑧 ∈ V → (𝑧 𝑦𝐵 𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 𝑧 𝑥𝐴 𝐶))
112, 10ax-mp 5 . . 3 (𝑧 𝑦𝐵 𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 𝑧 𝑥𝐴 𝐶)
128, 9, 113imtr4i 201 . 2 (𝑧 𝑥𝐴 𝑦𝐵 𝐶𝑧 𝑦𝐵 𝑥𝐴 𝐶)
1312ssriv 3201 1 𝑥𝐴 𝑦𝐵 𝐶 𝑦𝐵 𝑥𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2177  wral 2485  wrex 2486  Vcvv 2773  wss 3170   ciun 3936   ciin 3937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3176  df-ss 3183  df-iun 3938  df-iin 3939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator