ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuniin GIF version

Theorem iuniin 3876
Description: Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iuniin 𝑥𝐴 𝑦𝐵 𝐶 𝑦𝐵 𝑥𝐴 𝐶
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem iuniin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 r19.12 2572 . . . 4 (∃𝑥𝐴𝑦𝐵 𝑧𝐶 → ∀𝑦𝐵𝑥𝐴 𝑧𝐶)
2 vex 2729 . . . . . 6 𝑧 ∈ V
3 eliin 3871 . . . . . 6 (𝑧 ∈ V → (𝑧 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵 𝑧𝐶))
42, 3ax-mp 5 . . . . 5 (𝑧 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵 𝑧𝐶)
54rexbii 2473 . . . 4 (∃𝑥𝐴 𝑧 𝑦𝐵 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝑧𝐶)
6 eliun 3870 . . . . 5 (𝑧 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑧𝐶)
76ralbii 2472 . . . 4 (∀𝑦𝐵 𝑧 𝑥𝐴 𝐶 ↔ ∀𝑦𝐵𝑥𝐴 𝑧𝐶)
81, 5, 73imtr4i 200 . . 3 (∃𝑥𝐴 𝑧 𝑦𝐵 𝐶 → ∀𝑦𝐵 𝑧 𝑥𝐴 𝐶)
9 eliun 3870 . . 3 (𝑧 𝑥𝐴 𝑦𝐵 𝐶 ↔ ∃𝑥𝐴 𝑧 𝑦𝐵 𝐶)
10 eliin 3871 . . . 4 (𝑧 ∈ V → (𝑧 𝑦𝐵 𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 𝑧 𝑥𝐴 𝐶))
112, 10ax-mp 5 . . 3 (𝑧 𝑦𝐵 𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 𝑧 𝑥𝐴 𝐶)
128, 9, 113imtr4i 200 . 2 (𝑧 𝑥𝐴 𝑦𝐵 𝐶𝑧 𝑦𝐵 𝑥𝐴 𝐶)
1312ssriv 3146 1 𝑥𝐴 𝑦𝐵 𝐶 𝑦𝐵 𝑥𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2136  wral 2444  wrex 2445  Vcvv 2726  wss 3116   ciun 3866   ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-iun 3868  df-iin 3869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator