![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iuniin | GIF version |
Description: Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iuniin | ⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.12 2480 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
2 | vex 2625 | . . . . . 6 ⊢ 𝑧 ∈ V | |
3 | eliin 3743 | . . . . . 6 ⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶)) | |
4 | 2, 3 | ax-mp 7 | . . . . 5 ⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
5 | 4 | rexbii 2386 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
6 | eliun 3742 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
7 | 6 | ralbii 2385 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) |
8 | 1, 5, 7 | 3imtr4i 200 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 → ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
9 | eliun 3742 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶) | |
10 | eliin 3743 | . . . 4 ⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
11 | 2, 10 | ax-mp 7 | . . 3 ⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
12 | 8, 9, 11 | 3imtr4i 200 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 → 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶) |
13 | 12 | ssriv 3032 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 1439 ∀wral 2360 ∃wrex 2361 Vcvv 2622 ⊆ wss 3002 ∪ ciun 3738 ∩ ciin 3739 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2624 df-in 3008 df-ss 3015 df-iun 3740 df-iin 3741 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |