| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iuniin | GIF version | ||
| Description: Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iuniin | ⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.12 2613 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
| 2 | vex 2776 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 3 | eliin 3941 | . . . . . 6 ⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
| 5 | 4 | rexbii 2514 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
| 6 | eliun 3940 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
| 7 | 6 | ralbii 2513 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 8 | 1, 5, 7 | 3imtr4i 201 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 → ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
| 9 | eliun 3940 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶) | |
| 10 | eliin 3941 | . . . 4 ⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 11 | 2, 10 | ax-mp 5 | . . 3 ⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
| 12 | 8, 9, 11 | 3imtr4i 201 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 → 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶) |
| 13 | 12 | ssriv 3201 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 Vcvv 2773 ⊆ wss 3170 ∪ ciun 3936 ∩ ciin 3937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3176 df-ss 3183 df-iun 3938 df-iin 3939 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |