| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iuniin | GIF version | ||
| Description: Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iuniin | ⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.12 2603 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
| 2 | vex 2766 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 3 | eliin 3921 | . . . . . 6 ⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
| 5 | 4 | rexbii 2504 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
| 6 | eliun 3920 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
| 7 | 6 | ralbii 2503 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 8 | 1, 5, 7 | 3imtr4i 201 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶 → ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
| 9 | eliun 3920 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 𝐶) | |
| 10 | eliin 3921 | . . . 4 ⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 11 | 2, 10 | ax-mp 5 | . . 3 ⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
| 12 | 8, 9, 11 | 3imtr4i 201 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 → 𝑧 ∈ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶) |
| 13 | 12 | ssriv 3187 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 ⊆ ∩ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 Vcvv 2763 ⊆ wss 3157 ∪ ciun 3916 ∩ ciin 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-iun 3918 df-iin 3919 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |