Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iunun | GIF version |
Description: Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iunun | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.43 2628 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∨ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
2 | elun 3268 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) | |
3 | 2 | rexbii 2477 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) |
4 | eliun 3877 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
5 | eliun 3877 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
6 | 4, 5 | orbi12i 759 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∨ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
7 | 1, 3, 6 | 3bitr4i 211 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) |
8 | eliun 3877 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶)) | |
9 | elun 3268 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
10 | 7, 8, 9 | 3bitr4i 211 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ 𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶)) |
11 | 10 | eqriv 2167 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 703 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 ∪ cun 3119 ∪ ciun 3873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-iun 3875 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |