![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunun | GIF version |
Description: Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iunun | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.43 2526 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∨ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
2 | elun 3142 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) | |
3 | 2 | rexbii 2386 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) |
4 | eliun 3740 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
5 | eliun 3740 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
6 | 4, 5 | orbi12i 717 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∨ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
7 | 1, 3, 6 | 3bitr4i 211 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) |
8 | eliun 3740 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶)) | |
9 | elun 3142 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
10 | 7, 8, 9 | 3bitr4i 211 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ 𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶)) |
11 | 10 | eqriv 2086 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 665 = wceq 1290 ∈ wcel 1439 ∃wrex 2361 ∪ cun 2998 ∪ ciun 3736 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-un 3004 df-iun 3738 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |