ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunun GIF version

Theorem iunun 4005
Description: Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iunun 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶)

Proof of Theorem iunun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.43 2663 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (∃𝑥𝐴 𝑦𝐵 ∨ ∃𝑥𝐴 𝑦𝐶))
2 elun 3313 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
32rexbii 2512 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
4 eliun 3930 . . . . 5 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
5 eliun 3930 . . . . 5 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
64, 5orbi12i 765 . . . 4 ((𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶) ↔ (∃𝑥𝐴 𝑦𝐵 ∨ ∃𝑥𝐴 𝑦𝐶))
71, 3, 63bitr4i 212 . . 3 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶))
8 eliun 3930 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
9 elun 3313 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶) ↔ (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶))
107, 8, 93bitr4i 212 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶))
1110eqriv 2201 1 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wo 709   = wceq 1372  wcel 2175  wrex 2484  cun 3163   ciun 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-iun 3928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator