ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.42v GIF version

Theorem r19.42v 2651
Description: Restricted version of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.42v (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝐴 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.42v
StepHypRef Expression
1 r19.41v 2650 . 2 (∃𝑥𝐴 (𝜓𝜑) ↔ (∃𝑥𝐴 𝜓𝜑))
2 ancom 266 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
32rexbii 2501 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥𝐴 (𝜓𝜑))
4 ancom 266 . 2 ((𝜑 ∧ ∃𝑥𝐴 𝜓) ↔ (∃𝑥𝐴 𝜓𝜑))
51, 3, 43bitr4i 212 1 (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-rex 2478
This theorem is referenced by:  ceqsrexbv  2891  ceqsrex2v  2892  2reuswapdc  2964  iunrab  3960  iunin2  3976  iundif2ss  3978  iunopab  4312  elxp2  4677  cnvuni  4848  elunirn  5809  f1oiso  5869  oprabrexex2  6182  genpdflem  7567  1idprl  7650  1idpru  7651  ltexprlemm  7660  rexuz2  9646  4fvwrd4  10206  divalgb  12066
  Copyright terms: Public domain W3C validator