ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.42v GIF version

Theorem r19.42v 2662
Description: Restricted version of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.42v (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝐴 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.42v
StepHypRef Expression
1 r19.41v 2661 . 2 (∃𝑥𝐴 (𝜓𝜑) ↔ (∃𝑥𝐴 𝜓𝜑))
2 ancom 266 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
32rexbii 2512 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥𝐴 (𝜓𝜑))
4 ancom 266 . 2 ((𝜑 ∧ ∃𝑥𝐴 𝜓) ↔ (∃𝑥𝐴 𝜓𝜑))
51, 3, 43bitr4i 212 1 (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-rex 2489
This theorem is referenced by:  ceqsrexbv  2903  ceqsrex2v  2904  2reuswapdc  2976  iunrab  3974  iunin2  3990  iundif2ss  3992  iunopab  4327  elxp2  4692  cnvuni  4863  elunirn  5834  f1oiso  5894  oprabrexex2  6214  genpdflem  7619  1idprl  7702  1idpru  7703  ltexprlemm  7712  rexuz2  9701  4fvwrd4  10261  divalgb  12207
  Copyright terms: Public domain W3C validator