![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.42v | GIF version |
Description: Restricted version of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.42v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 2545 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
2 | ancom 264 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
3 | 2 | rexbii 2401 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
4 | ancom 264 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 211 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wrex 2376 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-4 1455 ax-17 1474 ax-ial 1482 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-rex 2381 |
This theorem is referenced by: ceqsrexbv 2770 ceqsrex2v 2771 2reuswapdc 2841 iunrab 3807 iunin2 3823 iundif2ss 3825 iunopab 4141 elxp2 4495 cnvuni 4663 elunirn 5599 f1oiso 5659 oprabrexex2 5959 genpdflem 7216 1idprl 7299 1idpru 7300 ltexprlemm 7309 rexuz2 9226 4fvwrd4 9758 divalgb 11417 |
Copyright terms: Public domain | W3C validator |