Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raleqdv | GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.) |
Ref | Expression |
---|---|
raleq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
raleqdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | raleq 2660 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∀wral 2443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 |
This theorem is referenced by: raleqbidv 2672 raleqbidva 2674 omsinds 4598 cbvfo 5752 isoselem 5787 ofrfval 6057 issmo2 6253 smoeq 6254 tfrlemisucaccv 6289 tfr1onlemsucaccv 6305 tfrcllemsucaccv 6318 nninfisollem0 7090 fzrevral2 10037 fzrevral3 10038 fzshftral 10039 fzoshftral 10169 uzsinds 10373 iseqf1olemqk 10425 seq3f1olemstep 10432 seq3f1olemp 10433 caucvgre 10919 cvg1nlemres 10923 rexuz3 10928 resqrexlemoverl 10959 resqrexlemsqa 10962 resqrexlemex 10963 climconst 11227 climshftlemg 11239 serf0 11289 summodclem2 11319 summodc 11320 zsumdc 11321 mertenslemi1 11472 prodmodclem2 11514 prodmodc 11515 zproddc 11516 zsupcllemstep 11874 zsupcllemex 11875 infssuzex 11878 suprzubdc 11881 nninfdcex 11882 prmind2 12048 ennnfoneleminc 12340 ennnfonelemex 12343 ennnfonelemnn0 12351 ennnfonelemr 12352 lmfval 12792 lmconst 12816 cncnp 12830 metss 13094 sin0pilem2 13303 2sqlem10 13561 nninfsellemdc 13850 nninfself 13853 nninfsellemeqinf 13856 nninfomni 13859 |
Copyright terms: Public domain | W3C validator |