| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqdv | GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.) |
| Ref | Expression |
|---|---|
| raleq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| raleqdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | raleq 2693 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Copyright terms: Public domain | W3C validator |