![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > raleqdv | GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.) |
Ref | Expression |
---|---|
raleq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
raleqdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | raleq 2584 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1299 ∀wral 2375 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 |
This theorem is referenced by: raleqbidv 2596 raleqbidva 2598 omsinds 4473 cbvfo 5618 isoselem 5653 ofrfval 5922 issmo2 6116 smoeq 6117 tfrlemisucaccv 6152 tfr1onlemsucaccv 6168 tfrcllemsucaccv 6181 fzrevral2 9727 fzrevral3 9728 fzshftral 9729 fzoshftral 9856 uzsinds 10056 iseqf1olemqk 10108 seq3f1olemstep 10115 seq3f1olemp 10116 caucvgre 10593 cvg1nlemres 10597 rexuz3 10602 resqrexlemoverl 10633 resqrexlemsqa 10636 resqrexlemex 10637 climconst 10898 climshftlemg 10910 serf0 10960 summodclem2 10990 summodc 10991 zsumdc 10992 mertenslemi1 11143 zsupcllemstep 11433 zsupcllemex 11434 infssuzex 11437 prmind2 11594 ennnfoneleminc 11716 ennnfonelemex 11719 ennnfonelemnn0 11727 ennnfonelemr 11728 lmfval 12143 lmconst 12166 cncnp 12180 metss 12422 ellimc3ap 12511 nninfsellemdc 12790 nninfself 12793 nninfsellemeqinf 12796 nninfomni 12799 |
Copyright terms: Public domain | W3C validator |