| Step | Hyp | Ref
| Expression |
| 1 | | znf1o.y |
. . . . . . 7
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
| 2 | 1 | zncrng 14201 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑌 ∈
CRing) |
| 3 | | crngring 13564 |
. . . . . 6
⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) |
| 4 | | eqid 2196 |
. . . . . . 7
⊢
(ℤRHom‘𝑌) = (ℤRHom‘𝑌) |
| 5 | 4 | zrhrhm 14179 |
. . . . . 6
⊢ (𝑌 ∈ Ring →
(ℤRHom‘𝑌)
∈ (ℤring RingHom 𝑌)) |
| 6 | | zringbas 14152 |
. . . . . . 7
⊢ ℤ =
(Base‘ℤring) |
| 7 | | znf1o.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑌) |
| 8 | 6, 7 | rhmf 13719 |
. . . . . 6
⊢
((ℤRHom‘𝑌) ∈ (ℤring RingHom
𝑌) →
(ℤRHom‘𝑌):ℤ⟶𝐵) |
| 9 | 2, 3, 5, 8 | 4syl 18 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (ℤRHom‘𝑌):ℤ⟶𝐵) |
| 10 | | znf1o.w |
. . . . . . . 8
⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
| 11 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 = 0) → 𝑁 = 0) |
| 12 | 11 | iftrued 3568 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 = 0) →
if(𝑁 = 0, ℤ,
(0..^𝑁)) =
ℤ) |
| 13 | 10, 12 | eqtrid 2241 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 = 0) → 𝑊 = ℤ) |
| 14 | | ssid 3203 |
. . . . . . 7
⊢ ℤ
⊆ ℤ |
| 15 | 13, 14 | eqsstrdi 3235 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 = 0) → 𝑊 ⊆
ℤ) |
| 16 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ ¬ 𝑁 = 0) →
¬ 𝑁 =
0) |
| 17 | 16 | iffalsed 3571 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ ¬ 𝑁 = 0) →
if(𝑁 = 0, ℤ,
(0..^𝑁)) = (0..^𝑁)) |
| 18 | 10, 17 | eqtrid 2241 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ ¬ 𝑁 = 0) →
𝑊 = (0..^𝑁)) |
| 19 | | elfzoelz 10222 |
. . . . . . . 8
⊢ (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ) |
| 20 | 19 | ssriv 3187 |
. . . . . . 7
⊢
(0..^𝑁) ⊆
ℤ |
| 21 | 18, 20 | eqsstrdi 3235 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ ¬ 𝑁 = 0) →
𝑊 ⊆
ℤ) |
| 22 | | nn0z 9346 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 23 | | 0z 9337 |
. . . . . . . 8
⊢ 0 ∈
ℤ |
| 24 | | zdceq 9401 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) |
| 25 | 22, 23, 24 | sylancl 413 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ DECID 𝑁 = 0) |
| 26 | | exmiddc 837 |
. . . . . . 7
⊢
(DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
| 27 | 25, 26 | syl 14 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 = 0 ∨ ¬
𝑁 = 0)) |
| 28 | 15, 21, 27 | mpjaodan 799 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 𝑊 ⊆
ℤ) |
| 29 | 9, 28 | fssresd 5434 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((ℤRHom‘𝑌) ↾ 𝑊):𝑊⟶𝐵) |
| 30 | | znf1o.f |
. . . . 5
⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) |
| 31 | 30 | feq1i 5400 |
. . . 4
⊢ (𝐹:𝑊⟶𝐵 ↔ ((ℤRHom‘𝑌) ↾ 𝑊):𝑊⟶𝐵) |
| 32 | 29, 31 | sylibr 134 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ 𝐹:𝑊⟶𝐵) |
| 33 | 30 | fveq1i 5559 |
. . . . . . . 8
⊢ (𝐹‘𝑥) = (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) |
| 34 | | fvres 5582 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑊 → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) = ((ℤRHom‘𝑌)‘𝑥)) |
| 35 | 34 | ad2antrl 490 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) = ((ℤRHom‘𝑌)‘𝑥)) |
| 36 | 33, 35 | eqtrid 2241 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝐹‘𝑥) = ((ℤRHom‘𝑌)‘𝑥)) |
| 37 | 30 | fveq1i 5559 |
. . . . . . . 8
⊢ (𝐹‘𝑦) = (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) |
| 38 | | fvres 5582 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑊 → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) = ((ℤRHom‘𝑌)‘𝑦)) |
| 39 | 38 | ad2antll 491 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) = ((ℤRHom‘𝑌)‘𝑦)) |
| 40 | 37, 39 | eqtrid 2241 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝐹‘𝑦) = ((ℤRHom‘𝑌)‘𝑦)) |
| 41 | 36, 40 | eqeq12d 2211 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ ((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦))) |
| 42 | | simpl 109 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑁 ∈
ℕ0) |
| 43 | 28 | adantr 276 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑊 ⊆ ℤ) |
| 44 | | simprl 529 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ 𝑊) |
| 45 | 43, 44 | sseldd 3184 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ ℤ) |
| 46 | | simprr 531 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ 𝑊) |
| 47 | 43, 46 | sseldd 3184 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ ℤ) |
| 48 | 1, 4 | zndvds 14205 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ
∧ 𝑦 ∈ ℤ)
→ (((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦) ↔ 𝑁 ∥ (𝑥 − 𝑦))) |
| 49 | 42, 45, 47, 48 | syl3anc 1249 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦) ↔ 𝑁 ∥ (𝑥 − 𝑦))) |
| 50 | | elnn0 9251 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
| 51 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑁 ∈ ℕ) |
| 52 | 51 | nnnn0d 9302 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑁 ∈
ℕ0) |
| 53 | 52, 28 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑊 ⊆ ℤ) |
| 54 | | simprl 529 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ 𝑊) |
| 55 | 53, 54 | sseldd 3184 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ ℤ) |
| 56 | | simprr 531 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ 𝑊) |
| 57 | 53, 56 | sseldd 3184 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ ℤ) |
| 58 | | moddvds 11964 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑁 ∥ (𝑥 − 𝑦))) |
| 59 | 51, 55, 57, 58 | syl3anc 1249 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑁 ∥ (𝑥 − 𝑦))) |
| 60 | | zq 9700 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℚ) |
| 61 | 55, 60 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ ℚ) |
| 62 | | nnq 9707 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℚ) |
| 63 | 62 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑁 ∈ ℚ) |
| 64 | | nnne0 9018 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
| 65 | | ifnefalse 3572 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁)) |
| 66 | 64, 65 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁)) |
| 67 | 10, 66 | eqtrid 2241 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑊 = (0..^𝑁)) |
| 68 | 67 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑊 = (0..^𝑁)) |
| 69 | 54, 68 | eleqtrd 2275 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ (0..^𝑁)) |
| 70 | | elfzole1 10231 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0..^𝑁) → 0 ≤ 𝑥) |
| 71 | 69, 70 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 0 ≤ 𝑥) |
| 72 | | elfzolt2 10232 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0..^𝑁) → 𝑥 < 𝑁) |
| 73 | 69, 72 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 < 𝑁) |
| 74 | | modqid 10441 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤
𝑥 ∧ 𝑥 < 𝑁)) → (𝑥 mod 𝑁) = 𝑥) |
| 75 | 61, 63, 71, 73, 74 | syl22anc 1250 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥 mod 𝑁) = 𝑥) |
| 76 | | zq 9700 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℚ) |
| 77 | 57, 76 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ ℚ) |
| 78 | 56, 68 | eleqtrd 2275 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ (0..^𝑁)) |
| 79 | | elfzole1 10231 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0..^𝑁) → 0 ≤ 𝑦) |
| 80 | 78, 79 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 0 ≤ 𝑦) |
| 81 | | elfzolt2 10232 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0..^𝑁) → 𝑦 < 𝑁) |
| 82 | 78, 81 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 < 𝑁) |
| 83 | | modqid 10441 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤
𝑦 ∧ 𝑦 < 𝑁)) → (𝑦 mod 𝑁) = 𝑦) |
| 84 | 77, 63, 80, 82, 83 | syl22anc 1250 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑦 mod 𝑁) = 𝑦) |
| 85 | 75, 84 | eqeq12d 2211 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑥 = 𝑦)) |
| 86 | 59, 85 | bitr3d 190 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑁 ∥ (𝑥 − 𝑦) ↔ 𝑥 = 𝑦)) |
| 87 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑁 = 0) |
| 88 | 87 | breq1d 4043 |
. . . . . . . . 9
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑁 ∥ (𝑥 − 𝑦) ↔ 0 ∥ (𝑥 − 𝑦))) |
| 89 | | id 19 |
. . . . . . . . . . . . 13
⊢ (𝑁 = 0 → 𝑁 = 0) |
| 90 | | 0nn0 9264 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℕ0 |
| 91 | 89, 90 | eqeltrdi 2287 |
. . . . . . . . . . . 12
⊢ (𝑁 = 0 → 𝑁 ∈
ℕ0) |
| 92 | 91, 45 | sylan 283 |
. . . . . . . . . . 11
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ ℤ) |
| 93 | 91, 47 | sylan 283 |
. . . . . . . . . . 11
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ ℤ) |
| 94 | 92, 93 | zsubcld 9453 |
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥 − 𝑦) ∈ ℤ) |
| 95 | | 0dvds 11976 |
. . . . . . . . . 10
⊢ ((𝑥 − 𝑦) ∈ ℤ → (0 ∥ (𝑥 − 𝑦) ↔ (𝑥 − 𝑦) = 0)) |
| 96 | 94, 95 | syl 14 |
. . . . . . . . 9
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (0 ∥ (𝑥 − 𝑦) ↔ (𝑥 − 𝑦) = 0)) |
| 97 | 92 | zcnd 9449 |
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ ℂ) |
| 98 | 93 | zcnd 9449 |
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ ℂ) |
| 99 | 97, 98 | subeq0ad 8347 |
. . . . . . . . 9
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) |
| 100 | 88, 96, 99 | 3bitrd 214 |
. . . . . . . 8
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑁 ∥ (𝑥 − 𝑦) ↔ 𝑥 = 𝑦)) |
| 101 | 86, 100 | jaoian 796 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑁 ∥ (𝑥 − 𝑦) ↔ 𝑥 = 𝑦)) |
| 102 | 50, 101 | sylanb 284 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑁 ∥ (𝑥 − 𝑦) ↔ 𝑥 = 𝑦)) |
| 103 | 41, 49, 102 | 3bitrd 214 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
| 104 | 103 | biimpd 144 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 105 | 104 | ralrimivva 2579 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ∀𝑥 ∈
𝑊 ∀𝑦 ∈ 𝑊 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 106 | | dff13 5815 |
. . 3
⊢ (𝐹:𝑊–1-1→𝐵 ↔ (𝐹:𝑊⟶𝐵 ∧ ∀𝑥 ∈ 𝑊 ∀𝑦 ∈ 𝑊 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 107 | 32, 105, 106 | sylanbrc 417 |
. 2
⊢ (𝑁 ∈ ℕ0
→ 𝐹:𝑊–1-1→𝐵) |
| 108 | | zmodfzo 10439 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑧 mod 𝑁) ∈ (0..^𝑁)) |
| 109 | 108 | ancoms 268 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ (0..^𝑁)) |
| 110 | 67 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑊 = (0..^𝑁)) |
| 111 | 109, 110 | eleqtrrd 2276 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ 𝑊) |
| 112 | | zq 9700 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℚ) |
| 113 | 112 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈
ℚ) |
| 114 | 62 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈
ℚ) |
| 115 | | nngt0 9015 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
| 116 | 115 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 0 <
𝑁) |
| 117 | | modqabs2 10450 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 <
𝑁) → ((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁)) |
| 118 | 113, 114,
116, 117 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁)) |
| 119 | | simpl 109 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈
ℕ) |
| 120 | 20, 109 | sselid 3181 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ ℤ) |
| 121 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈
ℤ) |
| 122 | | moddvds 11964 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑧 mod 𝑁) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧))) |
| 123 | 119, 120,
121, 122 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧))) |
| 124 | 118, 123 | mpbid 147 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)) |
| 125 | | nnnn0 9256 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 126 | 125 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈
ℕ0) |
| 127 | 1, 4 | zndvds 14205 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑧 mod 𝑁) ∈ ℤ ∧ 𝑧 ∈ ℤ) →
(((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧))) |
| 128 | 126, 120,
121, 127 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
(((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧))) |
| 129 | 124, 128 | mpbird 167 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧)) |
| 130 | 129 | eqcomd 2202 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁))) |
| 131 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑧 mod 𝑁) → ((ℤRHom‘𝑌)‘𝑦) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁))) |
| 132 | 131 | rspceeqv 2886 |
. . . . . . . . . 10
⊢ (((𝑧 mod 𝑁) ∈ 𝑊 ∧ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁))) → ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) |
| 133 | 111, 130,
132 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) |
| 134 | | iftrue 3566 |
. . . . . . . . . . . . 13
⊢ (𝑁 = 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = ℤ) |
| 135 | 134 | eleq2d 2266 |
. . . . . . . . . . . 12
⊢ (𝑁 = 0 → (𝑧 ∈ if(𝑁 = 0, ℤ, (0..^𝑁)) ↔ 𝑧 ∈ ℤ)) |
| 136 | 135 | biimpar 297 |
. . . . . . . . . . 11
⊢ ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ if(𝑁 = 0, ℤ, (0..^𝑁))) |
| 137 | 136, 10 | eleqtrrdi 2290 |
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ 𝑊) |
| 138 | | eqidd 2197 |
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) →
((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧)) |
| 139 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((ℤRHom‘𝑌)‘𝑦) = ((ℤRHom‘𝑌)‘𝑧)) |
| 140 | 139 | rspceeqv 2886 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑊 ∧ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧)) → ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) |
| 141 | 137, 138,
140 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) |
| 142 | 133, 141 | jaoian 796 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∧ 𝑧 ∈ ℤ) → ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) |
| 143 | 50, 142 | sylanb 284 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ ℤ)
→ ∃𝑦 ∈
𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) |
| 144 | 37, 38 | eqtrid 2241 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑊 → (𝐹‘𝑦) = ((ℤRHom‘𝑌)‘𝑦)) |
| 145 | 144 | eqeq2d 2208 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑊 → (((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))) |
| 146 | 145 | rexbiia 2512 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦) ↔ ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) |
| 147 | 143, 146 | sylibr 134 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ ℤ)
→ ∃𝑦 ∈
𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦)) |
| 148 | 147 | ralrimiva 2570 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ∀𝑧 ∈
ℤ ∃𝑦 ∈
𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦)) |
| 149 | 1, 7, 4 | znzrhfo 14204 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (ℤRHom‘𝑌):ℤ–onto→𝐵) |
| 150 | | fofn 5482 |
. . . . . 6
⊢
((ℤRHom‘𝑌):ℤ–onto→𝐵 → (ℤRHom‘𝑌) Fn ℤ) |
| 151 | | eqeq1 2203 |
. . . . . . . 8
⊢ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (𝑥 = (𝐹‘𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦))) |
| 152 | 151 | rexbidv 2498 |
. . . . . . 7
⊢ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (∃𝑦 ∈ 𝑊 𝑥 = (𝐹‘𝑦) ↔ ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦))) |
| 153 | 152 | ralrn 5700 |
. . . . . 6
⊢
((ℤRHom‘𝑌) Fn ℤ → (∀𝑥 ∈ ran
(ℤRHom‘𝑌)∃𝑦 ∈ 𝑊 𝑥 = (𝐹‘𝑦) ↔ ∀𝑧 ∈ ℤ ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦))) |
| 154 | 149, 150,
153 | 3syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (∀𝑥 ∈
ran (ℤRHom‘𝑌)∃𝑦 ∈ 𝑊 𝑥 = (𝐹‘𝑦) ↔ ∀𝑧 ∈ ℤ ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦))) |
| 155 | 148, 154 | mpbird 167 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ∀𝑥 ∈ ran
(ℤRHom‘𝑌)∃𝑦 ∈ 𝑊 𝑥 = (𝐹‘𝑦)) |
| 156 | | forn 5483 |
. . . . 5
⊢
((ℤRHom‘𝑌):ℤ–onto→𝐵 → ran (ℤRHom‘𝑌) = 𝐵) |
| 157 | 149, 156 | syl 14 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ran (ℤRHom‘𝑌) = 𝐵) |
| 158 | 155, 157 | raleqtrdv 2701 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ∀𝑥 ∈
𝐵 ∃𝑦 ∈ 𝑊 𝑥 = (𝐹‘𝑦)) |
| 159 | | dffo3 5709 |
. . 3
⊢ (𝐹:𝑊–onto→𝐵 ↔ (𝐹:𝑊⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝑊 𝑥 = (𝐹‘𝑦))) |
| 160 | 32, 158, 159 | sylanbrc 417 |
. 2
⊢ (𝑁 ∈ ℕ0
→ 𝐹:𝑊–onto→𝐵) |
| 161 | | df-f1o 5265 |
. 2
⊢ (𝐹:𝑊–1-1-onto→𝐵 ↔ (𝐹:𝑊–1-1→𝐵 ∧ 𝐹:𝑊–onto→𝐵)) |
| 162 | 107, 160,
161 | sylanbrc 417 |
1
⊢ (𝑁 ∈ ℕ0
→ 𝐹:𝑊–1-1-onto→𝐵) |