| Step | Hyp | Ref
 | Expression | 
| 1 |   | znf1o.y | 
. . . . . . 7
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) | 
| 2 | 1 | zncrng 14201 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑌 ∈
CRing) | 
| 3 |   | crngring 13564 | 
. . . . . 6
⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | 
| 4 |   | eqid 2196 | 
. . . . . . 7
⊢
(ℤRHom‘𝑌) = (ℤRHom‘𝑌) | 
| 5 | 4 | zrhrhm 14179 | 
. . . . . 6
⊢ (𝑌 ∈ Ring →
(ℤRHom‘𝑌)
∈ (ℤring RingHom 𝑌)) | 
| 6 |   | zringbas 14152 | 
. . . . . . 7
⊢ ℤ =
(Base‘ℤring) | 
| 7 |   | znf1o.b | 
. . . . . . 7
⊢ 𝐵 = (Base‘𝑌) | 
| 8 | 6, 7 | rhmf 13719 | 
. . . . . 6
⊢
((ℤRHom‘𝑌) ∈ (ℤring RingHom
𝑌) →
(ℤRHom‘𝑌):ℤ⟶𝐵) | 
| 9 | 2, 3, 5, 8 | 4syl 18 | 
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (ℤRHom‘𝑌):ℤ⟶𝐵) | 
| 10 |   | znf1o.w | 
. . . . . . . 8
⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) | 
| 11 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 = 0) → 𝑁 = 0) | 
| 12 | 11 | iftrued 3568 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 = 0) →
if(𝑁 = 0, ℤ,
(0..^𝑁)) =
ℤ) | 
| 13 | 10, 12 | eqtrid 2241 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 = 0) → 𝑊 = ℤ) | 
| 14 |   | ssid 3203 | 
. . . . . . 7
⊢ ℤ
⊆ ℤ | 
| 15 | 13, 14 | eqsstrdi 3235 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 = 0) → 𝑊 ⊆
ℤ) | 
| 16 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ ¬ 𝑁 = 0) →
¬ 𝑁 =
0) | 
| 17 | 16 | iffalsed 3571 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ ¬ 𝑁 = 0) →
if(𝑁 = 0, ℤ,
(0..^𝑁)) = (0..^𝑁)) | 
| 18 | 10, 17 | eqtrid 2241 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ ¬ 𝑁 = 0) →
𝑊 = (0..^𝑁)) | 
| 19 |   | elfzoelz 10222 | 
. . . . . . . 8
⊢ (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ) | 
| 20 | 19 | ssriv 3187 | 
. . . . . . 7
⊢
(0..^𝑁) ⊆
ℤ | 
| 21 | 18, 20 | eqsstrdi 3235 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ ¬ 𝑁 = 0) →
𝑊 ⊆
ℤ) | 
| 22 |   | nn0z 9346 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) | 
| 23 |   | 0z 9337 | 
. . . . . . . 8
⊢ 0 ∈
ℤ | 
| 24 |   | zdceq 9401 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) | 
| 25 | 22, 23, 24 | sylancl 413 | 
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ DECID 𝑁 = 0) | 
| 26 |   | exmiddc 837 | 
. . . . . . 7
⊢
(DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) | 
| 27 | 25, 26 | syl 14 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 = 0 ∨ ¬
𝑁 = 0)) | 
| 28 | 15, 21, 27 | mpjaodan 799 | 
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 𝑊 ⊆
ℤ) | 
| 29 | 9, 28 | fssresd 5434 | 
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((ℤRHom‘𝑌) ↾ 𝑊):𝑊⟶𝐵) | 
| 30 |   | znf1o.f | 
. . . . 5
⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) | 
| 31 | 30 | feq1i 5400 | 
. . . 4
⊢ (𝐹:𝑊⟶𝐵 ↔ ((ℤRHom‘𝑌) ↾ 𝑊):𝑊⟶𝐵) | 
| 32 | 29, 31 | sylibr 134 | 
. . 3
⊢ (𝑁 ∈ ℕ0
→ 𝐹:𝑊⟶𝐵) | 
| 33 | 30 | fveq1i 5559 | 
. . . . . . . 8
⊢ (𝐹‘𝑥) = (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) | 
| 34 |   | fvres 5582 | 
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑊 → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) = ((ℤRHom‘𝑌)‘𝑥)) | 
| 35 | 34 | ad2antrl 490 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) = ((ℤRHom‘𝑌)‘𝑥)) | 
| 36 | 33, 35 | eqtrid 2241 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝐹‘𝑥) = ((ℤRHom‘𝑌)‘𝑥)) | 
| 37 | 30 | fveq1i 5559 | 
. . . . . . . 8
⊢ (𝐹‘𝑦) = (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) | 
| 38 |   | fvres 5582 | 
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑊 → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) = ((ℤRHom‘𝑌)‘𝑦)) | 
| 39 | 38 | ad2antll 491 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) = ((ℤRHom‘𝑌)‘𝑦)) | 
| 40 | 37, 39 | eqtrid 2241 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝐹‘𝑦) = ((ℤRHom‘𝑌)‘𝑦)) | 
| 41 | 36, 40 | eqeq12d 2211 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ ((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦))) | 
| 42 |   | simpl 109 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑁 ∈
ℕ0) | 
| 43 | 28 | adantr 276 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑊 ⊆ ℤ) | 
| 44 |   | simprl 529 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ 𝑊) | 
| 45 | 43, 44 | sseldd 3184 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ ℤ) | 
| 46 |   | simprr 531 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ 𝑊) | 
| 47 | 43, 46 | sseldd 3184 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ ℤ) | 
| 48 | 1, 4 | zndvds 14205 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ
∧ 𝑦 ∈ ℤ)
→ (((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦) ↔ 𝑁 ∥ (𝑥 − 𝑦))) | 
| 49 | 42, 45, 47, 48 | syl3anc 1249 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦) ↔ 𝑁 ∥ (𝑥 − 𝑦))) | 
| 50 |   | elnn0 9251 | 
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) | 
| 51 |   | simpl 109 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑁 ∈ ℕ) | 
| 52 | 51 | nnnn0d 9302 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑁 ∈
ℕ0) | 
| 53 | 52, 28 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑊 ⊆ ℤ) | 
| 54 |   | simprl 529 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ 𝑊) | 
| 55 | 53, 54 | sseldd 3184 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ ℤ) | 
| 56 |   | simprr 531 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ 𝑊) | 
| 57 | 53, 56 | sseldd 3184 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ ℤ) | 
| 58 |   | moddvds 11964 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑁 ∥ (𝑥 − 𝑦))) | 
| 59 | 51, 55, 57, 58 | syl3anc 1249 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑁 ∥ (𝑥 − 𝑦))) | 
| 60 |   | zq 9700 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℚ) | 
| 61 | 55, 60 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ ℚ) | 
| 62 |   | nnq 9707 | 
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℚ) | 
| 63 | 62 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑁 ∈ ℚ) | 
| 64 |   | nnne0 9018 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | 
| 65 |   | ifnefalse 3572 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁)) | 
| 66 | 64, 65 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁)) | 
| 67 | 10, 66 | eqtrid 2241 | 
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑊 = (0..^𝑁)) | 
| 68 | 67 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑊 = (0..^𝑁)) | 
| 69 | 54, 68 | eleqtrd 2275 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ (0..^𝑁)) | 
| 70 |   | elfzole1 10231 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0..^𝑁) → 0 ≤ 𝑥) | 
| 71 | 69, 70 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 0 ≤ 𝑥) | 
| 72 |   | elfzolt2 10232 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (0..^𝑁) → 𝑥 < 𝑁) | 
| 73 | 69, 72 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 < 𝑁) | 
| 74 |   | modqid 10441 | 
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤
𝑥 ∧ 𝑥 < 𝑁)) → (𝑥 mod 𝑁) = 𝑥) | 
| 75 | 61, 63, 71, 73, 74 | syl22anc 1250 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥 mod 𝑁) = 𝑥) | 
| 76 |   | zq 9700 | 
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℚ) | 
| 77 | 57, 76 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ ℚ) | 
| 78 | 56, 68 | eleqtrd 2275 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ (0..^𝑁)) | 
| 79 |   | elfzole1 10231 | 
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0..^𝑁) → 0 ≤ 𝑦) | 
| 80 | 78, 79 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 0 ≤ 𝑦) | 
| 81 |   | elfzolt2 10232 | 
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0..^𝑁) → 𝑦 < 𝑁) | 
| 82 | 78, 81 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 < 𝑁) | 
| 83 |   | modqid 10441 | 
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (0 ≤
𝑦 ∧ 𝑦 < 𝑁)) → (𝑦 mod 𝑁) = 𝑦) | 
| 84 | 77, 63, 80, 82, 83 | syl22anc 1250 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑦 mod 𝑁) = 𝑦) | 
| 85 | 75, 84 | eqeq12d 2211 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑥 = 𝑦)) | 
| 86 | 59, 85 | bitr3d 190 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑁 ∥ (𝑥 − 𝑦) ↔ 𝑥 = 𝑦)) | 
| 87 |   | simpl 109 | 
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑁 = 0) | 
| 88 | 87 | breq1d 4043 | 
. . . . . . . . 9
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑁 ∥ (𝑥 − 𝑦) ↔ 0 ∥ (𝑥 − 𝑦))) | 
| 89 |   | id 19 | 
. . . . . . . . . . . . 13
⊢ (𝑁 = 0 → 𝑁 = 0) | 
| 90 |   | 0nn0 9264 | 
. . . . . . . . . . . . 13
⊢ 0 ∈
ℕ0 | 
| 91 | 89, 90 | eqeltrdi 2287 | 
. . . . . . . . . . . 12
⊢ (𝑁 = 0 → 𝑁 ∈
ℕ0) | 
| 92 | 91, 45 | sylan 283 | 
. . . . . . . . . . 11
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ ℤ) | 
| 93 | 91, 47 | sylan 283 | 
. . . . . . . . . . 11
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ ℤ) | 
| 94 | 92, 93 | zsubcld 9453 | 
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥 − 𝑦) ∈ ℤ) | 
| 95 |   | 0dvds 11976 | 
. . . . . . . . . 10
⊢ ((𝑥 − 𝑦) ∈ ℤ → (0 ∥ (𝑥 − 𝑦) ↔ (𝑥 − 𝑦) = 0)) | 
| 96 | 94, 95 | syl 14 | 
. . . . . . . . 9
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (0 ∥ (𝑥 − 𝑦) ↔ (𝑥 − 𝑦) = 0)) | 
| 97 | 92 | zcnd 9449 | 
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑥 ∈ ℂ) | 
| 98 | 93 | zcnd 9449 | 
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → 𝑦 ∈ ℂ) | 
| 99 | 97, 98 | subeq0ad 8347 | 
. . . . . . . . 9
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) | 
| 100 | 88, 96, 99 | 3bitrd 214 | 
. . . . . . . 8
⊢ ((𝑁 = 0 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑁 ∥ (𝑥 − 𝑦) ↔ 𝑥 = 𝑦)) | 
| 101 | 86, 100 | jaoian 796 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑁 ∥ (𝑥 − 𝑦) ↔ 𝑥 = 𝑦)) | 
| 102 | 50, 101 | sylanb 284 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑁 ∥ (𝑥 − 𝑦) ↔ 𝑥 = 𝑦)) | 
| 103 | 41, 49, 102 | 3bitrd 214 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) | 
| 104 | 103 | biimpd 144 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 105 | 104 | ralrimivva 2579 | 
. . 3
⊢ (𝑁 ∈ ℕ0
→ ∀𝑥 ∈
𝑊 ∀𝑦 ∈ 𝑊 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 106 |   | dff13 5815 | 
. . 3
⊢ (𝐹:𝑊–1-1→𝐵 ↔ (𝐹:𝑊⟶𝐵 ∧ ∀𝑥 ∈ 𝑊 ∀𝑦 ∈ 𝑊 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | 
| 107 | 32, 105, 106 | sylanbrc 417 | 
. 2
⊢ (𝑁 ∈ ℕ0
→ 𝐹:𝑊–1-1→𝐵) | 
| 108 |   | zmodfzo 10439 | 
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑧 mod 𝑁) ∈ (0..^𝑁)) | 
| 109 | 108 | ancoms 268 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ (0..^𝑁)) | 
| 110 | 67 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑊 = (0..^𝑁)) | 
| 111 | 109, 110 | eleqtrrd 2276 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ 𝑊) | 
| 112 |   | zq 9700 | 
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℚ) | 
| 113 | 112 | adantl 277 | 
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈
ℚ) | 
| 114 | 62 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈
ℚ) | 
| 115 |   | nngt0 9015 | 
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) | 
| 116 | 115 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 0 <
𝑁) | 
| 117 |   | modqabs2 10450 | 
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 <
𝑁) → ((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁)) | 
| 118 | 113, 114,
116, 117 | syl3anc 1249 | 
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁)) | 
| 119 |   | simpl 109 | 
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈
ℕ) | 
| 120 | 20, 109 | sselid 3181 | 
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ ℤ) | 
| 121 |   | simpr 110 | 
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈
ℤ) | 
| 122 |   | moddvds 11964 | 
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑧 mod 𝑁) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧))) | 
| 123 | 119, 120,
121, 122 | syl3anc 1249 | 
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧))) | 
| 124 | 118, 123 | mpbid 147 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)) | 
| 125 |   | nnnn0 9256 | 
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) | 
| 126 | 125 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈
ℕ0) | 
| 127 | 1, 4 | zndvds 14205 | 
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑧 mod 𝑁) ∈ ℤ ∧ 𝑧 ∈ ℤ) →
(((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧))) | 
| 128 | 126, 120,
121, 127 | syl3anc 1249 | 
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
(((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧))) | 
| 129 | 124, 128 | mpbird 167 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧)) | 
| 130 | 129 | eqcomd 2202 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁))) | 
| 131 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑦 = (𝑧 mod 𝑁) → ((ℤRHom‘𝑌)‘𝑦) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁))) | 
| 132 | 131 | rspceeqv 2886 | 
. . . . . . . . . 10
⊢ (((𝑧 mod 𝑁) ∈ 𝑊 ∧ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁))) → ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) | 
| 133 | 111, 130,
132 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) →
∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) | 
| 134 |   | iftrue 3566 | 
. . . . . . . . . . . . 13
⊢ (𝑁 = 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = ℤ) | 
| 135 | 134 | eleq2d 2266 | 
. . . . . . . . . . . 12
⊢ (𝑁 = 0 → (𝑧 ∈ if(𝑁 = 0, ℤ, (0..^𝑁)) ↔ 𝑧 ∈ ℤ)) | 
| 136 | 135 | biimpar 297 | 
. . . . . . . . . . 11
⊢ ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ if(𝑁 = 0, ℤ, (0..^𝑁))) | 
| 137 | 136, 10 | eleqtrrdi 2290 | 
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ 𝑊) | 
| 138 |   | eqidd 2197 | 
. . . . . . . . . 10
⊢ ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) →
((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧)) | 
| 139 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((ℤRHom‘𝑌)‘𝑦) = ((ℤRHom‘𝑌)‘𝑧)) | 
| 140 | 139 | rspceeqv 2886 | 
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑊 ∧ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧)) → ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) | 
| 141 | 137, 138,
140 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) | 
| 142 | 133, 141 | jaoian 796 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∧ 𝑧 ∈ ℤ) → ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) | 
| 143 | 50, 142 | sylanb 284 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ ℤ)
→ ∃𝑦 ∈
𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) | 
| 144 | 37, 38 | eqtrid 2241 | 
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑊 → (𝐹‘𝑦) = ((ℤRHom‘𝑌)‘𝑦)) | 
| 145 | 144 | eqeq2d 2208 | 
. . . . . . . 8
⊢ (𝑦 ∈ 𝑊 → (((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))) | 
| 146 | 145 | rexbiia 2512 | 
. . . . . . 7
⊢
(∃𝑦 ∈
𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦) ↔ ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)) | 
| 147 | 143, 146 | sylibr 134 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑧 ∈ ℤ)
→ ∃𝑦 ∈
𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦)) | 
| 148 | 147 | ralrimiva 2570 | 
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ∀𝑧 ∈
ℤ ∃𝑦 ∈
𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦)) | 
| 149 | 1, 7, 4 | znzrhfo 14204 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (ℤRHom‘𝑌):ℤ–onto→𝐵) | 
| 150 |   | fofn 5482 | 
. . . . . 6
⊢
((ℤRHom‘𝑌):ℤ–onto→𝐵 → (ℤRHom‘𝑌) Fn ℤ) | 
| 151 |   | eqeq1 2203 | 
. . . . . . . 8
⊢ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (𝑥 = (𝐹‘𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦))) | 
| 152 | 151 | rexbidv 2498 | 
. . . . . . 7
⊢ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (∃𝑦 ∈ 𝑊 𝑥 = (𝐹‘𝑦) ↔ ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦))) | 
| 153 | 152 | ralrn 5700 | 
. . . . . 6
⊢
((ℤRHom‘𝑌) Fn ℤ → (∀𝑥 ∈ ran
(ℤRHom‘𝑌)∃𝑦 ∈ 𝑊 𝑥 = (𝐹‘𝑦) ↔ ∀𝑧 ∈ ℤ ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦))) | 
| 154 | 149, 150,
153 | 3syl 17 | 
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (∀𝑥 ∈
ran (ℤRHom‘𝑌)∃𝑦 ∈ 𝑊 𝑥 = (𝐹‘𝑦) ↔ ∀𝑧 ∈ ℤ ∃𝑦 ∈ 𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹‘𝑦))) | 
| 155 | 148, 154 | mpbird 167 | 
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ∀𝑥 ∈ ran
(ℤRHom‘𝑌)∃𝑦 ∈ 𝑊 𝑥 = (𝐹‘𝑦)) | 
| 156 |   | forn 5483 | 
. . . . 5
⊢
((ℤRHom‘𝑌):ℤ–onto→𝐵 → ran (ℤRHom‘𝑌) = 𝐵) | 
| 157 | 149, 156 | syl 14 | 
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ran (ℤRHom‘𝑌) = 𝐵) | 
| 158 | 155, 157 | raleqtrdv 2701 | 
. . 3
⊢ (𝑁 ∈ ℕ0
→ ∀𝑥 ∈
𝐵 ∃𝑦 ∈ 𝑊 𝑥 = (𝐹‘𝑦)) | 
| 159 |   | dffo3 5709 | 
. . 3
⊢ (𝐹:𝑊–onto→𝐵 ↔ (𝐹:𝑊⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝑊 𝑥 = (𝐹‘𝑦))) | 
| 160 | 32, 158, 159 | sylanbrc 417 | 
. 2
⊢ (𝑁 ∈ ℕ0
→ 𝐹:𝑊–onto→𝐵) | 
| 161 |   | df-f1o 5265 | 
. 2
⊢ (𝐹:𝑊–1-1-onto→𝐵 ↔ (𝐹:𝑊–1-1→𝐵 ∧ 𝐹:𝑊–onto→𝐵)) | 
| 162 | 107, 160,
161 | sylanbrc 417 | 
1
⊢ (𝑁 ∈ ℕ0
→ 𝐹:𝑊–1-1-onto→𝐵) |