![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralcom | GIF version |
Description: Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcom | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2235 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2235 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | ralcomf 2542 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wral 2370 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-sb 1700 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 |
This theorem is referenced by: ralcom4 2655 ssint 3726 issod 4170 reusv3 4310 cnvpom 5007 cnvsom 5008 fununi 5116 isocnv2 5629 dfsmo2 6090 ixpiinm 6521 rexfiuz 10553 tgss2 11946 |
Copyright terms: Public domain | W3C validator |