ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcom GIF version

Theorem ralcom 2668
Description: Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
ralcom (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem ralcom
StepHypRef Expression
1 nfcv 2347 . 2 𝑦𝐴
2 nfcv 2347 . 2 𝑥𝐵
31, 2ralcomf 2666 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wral 2483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488
This theorem is referenced by:  ralrot3  2670  ralcom4  2793  ssint  3900  issod  4365  reusv3  4506  cnvpom  5224  cnvsom  5225  fununi  5341  isocnv2  5880  dfsmo2  6372  ixpiinm  6810  rexfiuz  11271  isnsg2  13510  opprsubrngg  13944  opprdomnbg  14007  rmodislmodlem  14083  rmodislmod  14084  tgss2  14522  cnmptcom  14741
  Copyright terms: Public domain W3C validator