ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcom GIF version

Theorem ralcom 2657
Description: Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
ralcom (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem ralcom
StepHypRef Expression
1 nfcv 2336 . 2 𝑦𝐴
2 nfcv 2336 . 2 𝑥𝐵
31, 2ralcomf 2655 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477
This theorem is referenced by:  ralrot3  2659  ralcom4  2782  ssint  3887  issod  4351  reusv3  4492  cnvpom  5209  cnvsom  5210  fununi  5323  isocnv2  5856  dfsmo2  6342  ixpiinm  6780  rexfiuz  11136  isnsg2  13276  opprsubrngg  13710  opprdomnbg  13773  rmodislmodlem  13849  rmodislmod  13850  tgss2  14258  cnmptcom  14477
  Copyright terms: Public domain W3C validator