ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcom GIF version

Theorem ralcom 2671
Description: Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
ralcom (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem ralcom
StepHypRef Expression
1 nfcv 2350 . 2 𝑦𝐴
2 nfcv 2350 . 2 𝑥𝐵
31, 2ralcomf 2669 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491
This theorem is referenced by:  ralrot3  2673  ralcom4  2799  ssint  3915  issod  4384  reusv3  4525  cnvpom  5244  cnvsom  5245  fununi  5361  isocnv2  5904  dfsmo2  6396  ixpiinm  6834  rexfiuz  11415  isnsg2  13654  opprsubrngg  14088  opprdomnbg  14151  rmodislmodlem  14227  rmodislmod  14228  tgss2  14666  cnmptcom  14885
  Copyright terms: Public domain W3C validator