Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralcom GIF version

Theorem ralcom 2592
 Description: Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
ralcom (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem ralcom
StepHypRef Expression
1 nfcv 2279 . 2 𝑦𝐴
2 nfcv 2279 . 2 𝑥𝐵
31, 2ralcomf 2590 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
 Colors of variables: wff set class Syntax hints:   ↔ wb 104  ∀wral 2414 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419 This theorem is referenced by:  ralcom4  2703  ssint  3782  issod  4236  reusv3  4376  cnvpom  5076  cnvsom  5077  fununi  5186  isocnv2  5706  dfsmo2  6177  ixpiinm  6611  rexfiuz  10754  tgss2  12237  cnmptcom  12456
 Copyright terms: Public domain W3C validator