![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralxfrALT | GIF version |
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. This proof does not use ralxfrd 4463. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ralxfr.1 | ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) |
ralxfr.2 | ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
ralxfr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralxfrALT | ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfr.1 | . . . . 5 ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) | |
2 | ralxfr.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rspcv 2838 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
4 | 1, 3 | syl 14 | . . . 4 ⊢ (𝑦 ∈ 𝐶 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
5 | 4 | com12 30 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐶 → 𝜓)) |
6 | 5 | ralrimiv 2549 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐶 𝜓) |
7 | ralxfr.2 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
8 | nfra1 2508 | . . . . 5 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐶 𝜓 | |
9 | nfv 1528 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
10 | rsp 2524 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (𝑦 ∈ 𝐶 → 𝜓)) | |
11 | 2 | biimprcd 160 | . . . . . 6 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
12 | 10, 11 | syl6 33 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (𝑦 ∈ 𝐶 → (𝑥 = 𝐴 → 𝜑))) |
13 | 8, 9, 12 | rexlimd 2591 | . . . 4 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝜑)) |
14 | 7, 13 | syl5 32 | . . 3 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (𝑥 ∈ 𝐵 → 𝜑)) |
15 | 14 | ralrimiv 2549 | . 2 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → ∀𝑥 ∈ 𝐵 𝜑) |
16 | 6, 15 | impbii 126 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |