ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralxfrALT GIF version

Theorem ralxfrALT 4388
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. This proof does not use ralxfrd 4383. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ralxfr.1 (𝑦𝐶𝐴𝐵)
ralxfr.2 (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)
ralxfr.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralxfrALT (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐶 𝜓)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem ralxfrALT
StepHypRef Expression
1 ralxfr.1 . . . . 5 (𝑦𝐶𝐴𝐵)
2 ralxfr.3 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
32rspcv 2785 . . . . 5 (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
41, 3syl 14 . . . 4 (𝑦𝐶 → (∀𝑥𝐵 𝜑𝜓))
54com12 30 . . 3 (∀𝑥𝐵 𝜑 → (𝑦𝐶𝜓))
65ralrimiv 2504 . 2 (∀𝑥𝐵 𝜑 → ∀𝑦𝐶 𝜓)
7 ralxfr.2 . . . 4 (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)
8 nfra1 2466 . . . . 5 𝑦𝑦𝐶 𝜓
9 nfv 1508 . . . . 5 𝑦𝜑
10 rsp 2480 . . . . . 6 (∀𝑦𝐶 𝜓 → (𝑦𝐶𝜓))
112biimprcd 159 . . . . . 6 (𝜓 → (𝑥 = 𝐴𝜑))
1210, 11syl6 33 . . . . 5 (∀𝑦𝐶 𝜓 → (𝑦𝐶 → (𝑥 = 𝐴𝜑)))
138, 9, 12rexlimd 2546 . . . 4 (∀𝑦𝐶 𝜓 → (∃𝑦𝐶 𝑥 = 𝐴𝜑))
147, 13syl5 32 . . 3 (∀𝑦𝐶 𝜓 → (𝑥𝐵𝜑))
1514ralrimiv 2504 . 2 (∀𝑦𝐶 𝜓 → ∀𝑥𝐵 𝜑)
166, 15impbii 125 1 (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐶 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator