ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euen1 GIF version

Theorem euen1 6858
Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
euen1 (∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)

Proof of Theorem euen1
StepHypRef Expression
1 reuen1 6857 . 2 (∃!𝑥 ∈ V 𝜑 ↔ {𝑥 ∈ V ∣ 𝜑} ≈ 1o)
2 reuv 2779 . 2 (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)
3 rabab 2781 . . 3 {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}
43breq1i 4037 . 2 ({𝑥 ∈ V ∣ 𝜑} ≈ 1o ↔ {𝑥𝜑} ≈ 1o)
51, 2, 43bitr3i 210 1 (∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)
Colors of variables: wff set class
Syntax hints:  wb 105  ∃!weu 2042  {cab 2179  ∃!wreu 2474  {crab 2476  Vcvv 2760   class class class wbr 4030  1oc1o 6464  cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6471  df-en 6797
This theorem is referenced by:  euen1b  6859
  Copyright terms: Public domain W3C validator