![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > euen1 | GIF version |
Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
euen1 | ⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuen1 6574 | . 2 ⊢ (∃!𝑥 ∈ V 𝜑 ↔ {𝑥 ∈ V ∣ 𝜑} ≈ 1o) | |
2 | reuv 2641 | . 2 ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) | |
3 | rabab 2643 | . . 3 ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} | |
4 | 3 | breq1i 3860 | . 2 ⊢ ({𝑥 ∈ V ∣ 𝜑} ≈ 1o ↔ {𝑥 ∣ 𝜑} ≈ 1o) |
5 | 1, 2, 4 | 3bitr3i 209 | 1 ⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃!weu 1949 {cab 2075 ∃!wreu 2362 {crab 2364 Vcvv 2622 class class class wbr 3853 1oc1o 6190 ≈ cen 6511 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-nul 3973 ax-pow 4017 ax-pr 4047 ax-un 4271 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2624 df-sbc 2844 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-nul 3290 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-br 3854 df-opab 3908 df-id 4131 df-suc 4209 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-rn 4465 df-res 4466 df-ima 4467 df-iota 4995 df-fun 5032 df-fn 5033 df-f 5034 df-f1 5035 df-fo 5036 df-f1o 5037 df-fv 5038 df-1o 6197 df-en 6514 |
This theorem is referenced by: euen1b 6576 |
Copyright terms: Public domain | W3C validator |