![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suplocexprlemell | GIF version |
Description: Lemma for suplocexpr 7787. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
Ref | Expression |
---|---|
suplocexprlemell | ⊢ (𝐵 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 6212 | . . . . 5 ⊢ 1st :V–onto→V | |
2 | fofn 5479 | . . . . 5 ⊢ (1st :V–onto→V → 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 1st Fn V |
4 | ssv 3202 | . . . 4 ⊢ 𝐴 ⊆ V | |
5 | fnssres 5368 | . . . 4 ⊢ ((1st Fn V ∧ 𝐴 ⊆ V) → (1st ↾ 𝐴) Fn 𝐴) | |
6 | 3, 4, 5 | mp2an 426 | . . 3 ⊢ (1st ↾ 𝐴) Fn 𝐴 |
7 | eluniimadm 5809 | . . 3 ⊢ ((1st ↾ 𝐴) Fn 𝐴 → (𝐵 ∈ ∪ ((1st ↾ 𝐴) “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ ((1st ↾ 𝐴)‘𝑥))) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ ∪ ((1st ↾ 𝐴) “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ ((1st ↾ 𝐴)‘𝑥)) |
9 | resima 4976 | . . . 4 ⊢ ((1st ↾ 𝐴) “ 𝐴) = (1st “ 𝐴) | |
10 | 9 | unieqi 3846 | . . 3 ⊢ ∪ ((1st ↾ 𝐴) “ 𝐴) = ∪ (1st “ 𝐴) |
11 | 10 | eleq2i 2260 | . 2 ⊢ (𝐵 ∈ ∪ ((1st ↾ 𝐴) “ 𝐴) ↔ 𝐵 ∈ ∪ (1st “ 𝐴)) |
12 | fvres 5579 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((1st ↾ 𝐴)‘𝑥) = (1st ‘𝑥)) | |
13 | 12 | eleq2d 2263 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ∈ ((1st ↾ 𝐴)‘𝑥) ↔ 𝐵 ∈ (1st ‘𝑥))) |
14 | 13 | rexbiia 2509 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ∈ ((1st ↾ 𝐴)‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) |
15 | 8, 11, 14 | 3bitr3i 210 | 1 ⊢ (𝐵 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2164 ∃wrex 2473 Vcvv 2760 ⊆ wss 3154 ∪ cuni 3836 ↾ cres 4662 “ cima 4663 Fn wfn 5250 –onto→wfo 5253 ‘cfv 5255 1st c1st 6193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fo 5261 df-fv 5263 df-1st 6195 |
This theorem is referenced by: suplocexprlemml 7778 suplocexprlemrl 7779 suplocexprlemdisj 7782 suplocexprlemloc 7783 suplocexprlemex 7784 suplocexprlemlub 7786 |
Copyright terms: Public domain | W3C validator |