| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemell | GIF version | ||
| Description: Lemma for suplocexpr 7900. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexprlemell | ⊢ (𝐵 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo1st 6293 | . . . . 5 ⊢ 1st :V–onto→V | |
| 2 | fofn 5546 | . . . . 5 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 1st Fn V |
| 4 | ssv 3246 | . . . 4 ⊢ 𝐴 ⊆ V | |
| 5 | fnssres 5432 | . . . 4 ⊢ ((1st Fn V ∧ 𝐴 ⊆ V) → (1st ↾ 𝐴) Fn 𝐴) | |
| 6 | 3, 4, 5 | mp2an 426 | . . 3 ⊢ (1st ↾ 𝐴) Fn 𝐴 |
| 7 | eluniimadm 5882 | . . 3 ⊢ ((1st ↾ 𝐴) Fn 𝐴 → (𝐵 ∈ ∪ ((1st ↾ 𝐴) “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ ((1st ↾ 𝐴)‘𝑥))) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ ∪ ((1st ↾ 𝐴) “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ ((1st ↾ 𝐴)‘𝑥)) |
| 9 | resima 5034 | . . . 4 ⊢ ((1st ↾ 𝐴) “ 𝐴) = (1st “ 𝐴) | |
| 10 | 9 | unieqi 3897 | . . 3 ⊢ ∪ ((1st ↾ 𝐴) “ 𝐴) = ∪ (1st “ 𝐴) |
| 11 | 10 | eleq2i 2296 | . 2 ⊢ (𝐵 ∈ ∪ ((1st ↾ 𝐴) “ 𝐴) ↔ 𝐵 ∈ ∪ (1st “ 𝐴)) |
| 12 | fvres 5647 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((1st ↾ 𝐴)‘𝑥) = (1st ‘𝑥)) | |
| 13 | 12 | eleq2d 2299 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ∈ ((1st ↾ 𝐴)‘𝑥) ↔ 𝐵 ∈ (1st ‘𝑥))) |
| 14 | 13 | rexbiia 2545 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ∈ ((1st ↾ 𝐴)‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) |
| 15 | 8, 11, 14 | 3bitr3i 210 | 1 ⊢ (𝐵 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2200 ∃wrex 2509 Vcvv 2799 ⊆ wss 3197 ∪ cuni 3887 ↾ cres 4718 “ cima 4719 Fn wfn 5309 –onto→wfo 5312 ‘cfv 5314 1st c1st 6274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fo 5320 df-fv 5322 df-1st 6276 |
| This theorem is referenced by: suplocexprlemml 7891 suplocexprlemrl 7892 suplocexprlemdisj 7895 suplocexprlemloc 7896 suplocexprlemex 7897 suplocexprlemlub 7899 |
| Copyright terms: Public domain | W3C validator |