ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemell GIF version

Theorem suplocexprlemell 7712
Description: Lemma for suplocexpr 7724. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Assertion
Ref Expression
suplocexprlemell (šµ āˆˆ āˆŖ (1st ā€œ š“) ā†” āˆƒš‘„ āˆˆ š“ šµ āˆˆ (1st ā€˜š‘„))
Distinct variable groups:   š‘„,š“   š‘„,šµ

Proof of Theorem suplocexprlemell
StepHypRef Expression
1 fo1st 6158 . . . . 5 1st :Vā€“ontoā†’V
2 fofn 5441 . . . . 5 (1st :Vā€“ontoā†’V ā†’ 1st Fn V)
31, 2ax-mp 5 . . . 4 1st Fn V
4 ssv 3178 . . . 4 š“ āŠ† V
5 fnssres 5330 . . . 4 ((1st Fn V āˆ§ š“ āŠ† V) ā†’ (1st ā†¾ š“) Fn š“)
63, 4, 5mp2an 426 . . 3 (1st ā†¾ š“) Fn š“
7 eluniimadm 5766 . . 3 ((1st ā†¾ š“) Fn š“ ā†’ (šµ āˆˆ āˆŖ ((1st ā†¾ š“) ā€œ š“) ā†” āˆƒš‘„ āˆˆ š“ šµ āˆˆ ((1st ā†¾ š“)ā€˜š‘„)))
86, 7ax-mp 5 . 2 (šµ āˆˆ āˆŖ ((1st ā†¾ š“) ā€œ š“) ā†” āˆƒš‘„ āˆˆ š“ šµ āˆˆ ((1st ā†¾ š“)ā€˜š‘„))
9 resima 4941 . . . 4 ((1st ā†¾ š“) ā€œ š“) = (1st ā€œ š“)
109unieqi 3820 . . 3 āˆŖ ((1st ā†¾ š“) ā€œ š“) = āˆŖ (1st ā€œ š“)
1110eleq2i 2244 . 2 (šµ āˆˆ āˆŖ ((1st ā†¾ š“) ā€œ š“) ā†” šµ āˆˆ āˆŖ (1st ā€œ š“))
12 fvres 5540 . . . 4 (š‘„ āˆˆ š“ ā†’ ((1st ā†¾ š“)ā€˜š‘„) = (1st ā€˜š‘„))
1312eleq2d 2247 . . 3 (š‘„ āˆˆ š“ ā†’ (šµ āˆˆ ((1st ā†¾ š“)ā€˜š‘„) ā†” šµ āˆˆ (1st ā€˜š‘„)))
1413rexbiia 2492 . 2 (āˆƒš‘„ āˆˆ š“ šµ āˆˆ ((1st ā†¾ š“)ā€˜š‘„) ā†” āˆƒš‘„ āˆˆ š“ šµ āˆˆ (1st ā€˜š‘„))
158, 11, 143bitr3i 210 1 (šµ āˆˆ āˆŖ (1st ā€œ š“) ā†” āˆƒš‘„ āˆˆ š“ šµ āˆˆ (1st ā€˜š‘„))
Colors of variables: wff set class
Syntax hints:   ā†” wb 105   āˆˆ wcel 2148  āˆƒwrex 2456  Vcvv 2738   āŠ† wss 3130  āˆŖ cuni 3810   ā†¾ cres 4629   ā€œ cima 4630   Fn wfn 5212  ā€“ontoā†’wfo 5215  ā€˜cfv 5217  1st c1st 6139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fo 5223  df-fv 5225  df-1st 6141
This theorem is referenced by:  suplocexprlemml  7715  suplocexprlemrl  7716  suplocexprlemdisj  7719  suplocexprlemloc  7720  suplocexprlemex  7721  suplocexprlemlub  7723
  Copyright terms: Public domain W3C validator