ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemell GIF version

Theorem suplocexprlemell 7773
Description: Lemma for suplocexpr 7785. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Assertion
Ref Expression
suplocexprlemell (𝐵 (1st𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (1st𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem suplocexprlemell
StepHypRef Expression
1 fo1st 6210 . . . . 5 1st :V–onto→V
2 fofn 5478 . . . . 5 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . 4 1st Fn V
4 ssv 3201 . . . 4 𝐴 ⊆ V
5 fnssres 5367 . . . 4 ((1st Fn V ∧ 𝐴 ⊆ V) → (1st𝐴) Fn 𝐴)
63, 4, 5mp2an 426 . . 3 (1st𝐴) Fn 𝐴
7 eluniimadm 5808 . . 3 ((1st𝐴) Fn 𝐴 → (𝐵 ((1st𝐴) “ 𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ ((1st𝐴)‘𝑥)))
86, 7ax-mp 5 . 2 (𝐵 ((1st𝐴) “ 𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ ((1st𝐴)‘𝑥))
9 resima 4975 . . . 4 ((1st𝐴) “ 𝐴) = (1st𝐴)
109unieqi 3845 . . 3 ((1st𝐴) “ 𝐴) = (1st𝐴)
1110eleq2i 2260 . 2 (𝐵 ((1st𝐴) “ 𝐴) ↔ 𝐵 (1st𝐴))
12 fvres 5578 . . . 4 (𝑥𝐴 → ((1st𝐴)‘𝑥) = (1st𝑥))
1312eleq2d 2263 . . 3 (𝑥𝐴 → (𝐵 ∈ ((1st𝐴)‘𝑥) ↔ 𝐵 ∈ (1st𝑥)))
1413rexbiia 2509 . 2 (∃𝑥𝐴 𝐵 ∈ ((1st𝐴)‘𝑥) ↔ ∃𝑥𝐴 𝐵 ∈ (1st𝑥))
158, 11, 143bitr3i 210 1 (𝐵 (1st𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (1st𝑥))
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2164  wrex 2473  Vcvv 2760  wss 3153   cuni 3835  cres 4661  cima 4662   Fn wfn 5249  ontowfo 5252  cfv 5254  1st c1st 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-1st 6193
This theorem is referenced by:  suplocexprlemml  7776  suplocexprlemrl  7777  suplocexprlemdisj  7780  suplocexprlemloc  7781  suplocexprlemex  7782  suplocexprlemlub  7784
  Copyright terms: Public domain W3C validator