ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemell GIF version

Theorem suplocexprlemell 7780
Description: Lemma for suplocexpr 7792. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Assertion
Ref Expression
suplocexprlemell (𝐵 (1st𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (1st𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem suplocexprlemell
StepHypRef Expression
1 fo1st 6215 . . . . 5 1st :V–onto→V
2 fofn 5482 . . . . 5 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . 4 1st Fn V
4 ssv 3205 . . . 4 𝐴 ⊆ V
5 fnssres 5371 . . . 4 ((1st Fn V ∧ 𝐴 ⊆ V) → (1st𝐴) Fn 𝐴)
63, 4, 5mp2an 426 . . 3 (1st𝐴) Fn 𝐴
7 eluniimadm 5812 . . 3 ((1st𝐴) Fn 𝐴 → (𝐵 ((1st𝐴) “ 𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ ((1st𝐴)‘𝑥)))
86, 7ax-mp 5 . 2 (𝐵 ((1st𝐴) “ 𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ ((1st𝐴)‘𝑥))
9 resima 4979 . . . 4 ((1st𝐴) “ 𝐴) = (1st𝐴)
109unieqi 3849 . . 3 ((1st𝐴) “ 𝐴) = (1st𝐴)
1110eleq2i 2263 . 2 (𝐵 ((1st𝐴) “ 𝐴) ↔ 𝐵 (1st𝐴))
12 fvres 5582 . . . 4 (𝑥𝐴 → ((1st𝐴)‘𝑥) = (1st𝑥))
1312eleq2d 2266 . . 3 (𝑥𝐴 → (𝐵 ∈ ((1st𝐴)‘𝑥) ↔ 𝐵 ∈ (1st𝑥)))
1413rexbiia 2512 . 2 (∃𝑥𝐴 𝐵 ∈ ((1st𝐴)‘𝑥) ↔ ∃𝑥𝐴 𝐵 ∈ (1st𝑥))
158, 11, 143bitr3i 210 1 (𝐵 (1st𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (1st𝑥))
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2167  wrex 2476  Vcvv 2763  wss 3157   cuni 3839  cres 4665  cima 4666   Fn wfn 5253  ontowfo 5256  cfv 5258  1st c1st 6196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-1st 6198
This theorem is referenced by:  suplocexprlemml  7783  suplocexprlemrl  7784  suplocexprlemdisj  7787  suplocexprlemloc  7788  suplocexprlemex  7789  suplocexprlemlub  7791
  Copyright terms: Public domain W3C validator