| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suplocexprlemell | GIF version | ||
| Description: Lemma for suplocexpr 7851. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
| Ref | Expression |
|---|---|
| suplocexprlemell | ⊢ (𝐵 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo1st 6253 | . . . . 5 ⊢ 1st :V–onto→V | |
| 2 | fofn 5509 | . . . . 5 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 1st Fn V |
| 4 | ssv 3217 | . . . 4 ⊢ 𝐴 ⊆ V | |
| 5 | fnssres 5395 | . . . 4 ⊢ ((1st Fn V ∧ 𝐴 ⊆ V) → (1st ↾ 𝐴) Fn 𝐴) | |
| 6 | 3, 4, 5 | mp2an 426 | . . 3 ⊢ (1st ↾ 𝐴) Fn 𝐴 |
| 7 | eluniimadm 5844 | . . 3 ⊢ ((1st ↾ 𝐴) Fn 𝐴 → (𝐵 ∈ ∪ ((1st ↾ 𝐴) “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ ((1st ↾ 𝐴)‘𝑥))) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ ∪ ((1st ↾ 𝐴) “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ ((1st ↾ 𝐴)‘𝑥)) |
| 9 | resima 4998 | . . . 4 ⊢ ((1st ↾ 𝐴) “ 𝐴) = (1st “ 𝐴) | |
| 10 | 9 | unieqi 3863 | . . 3 ⊢ ∪ ((1st ↾ 𝐴) “ 𝐴) = ∪ (1st “ 𝐴) |
| 11 | 10 | eleq2i 2273 | . 2 ⊢ (𝐵 ∈ ∪ ((1st ↾ 𝐴) “ 𝐴) ↔ 𝐵 ∈ ∪ (1st “ 𝐴)) |
| 12 | fvres 5610 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((1st ↾ 𝐴)‘𝑥) = (1st ‘𝑥)) | |
| 13 | 12 | eleq2d 2276 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ∈ ((1st ↾ 𝐴)‘𝑥) ↔ 𝐵 ∈ (1st ‘𝑥))) |
| 14 | 13 | rexbiia 2522 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ∈ ((1st ↾ 𝐴)‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) |
| 15 | 8, 11, 14 | 3bitr3i 210 | 1 ⊢ (𝐵 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2177 ∃wrex 2486 Vcvv 2773 ⊆ wss 3168 ∪ cuni 3853 ↾ cres 4682 “ cima 4683 Fn wfn 5272 –onto→wfo 5275 ‘cfv 5277 1st c1st 6234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fo 5283 df-fv 5285 df-1st 6236 |
| This theorem is referenced by: suplocexprlemml 7842 suplocexprlemrl 7843 suplocexprlemdisj 7846 suplocexprlemloc 7847 suplocexprlemex 7848 suplocexprlemlub 7850 |
| Copyright terms: Public domain | W3C validator |