![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suplocexprlemell | GIF version |
Description: Lemma for suplocexpr 7726. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
Ref | Expression |
---|---|
suplocexprlemell | ā¢ (šµ ā āŖ (1st ā š“) ā āš„ ā š“ šµ ā (1st āš„)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 6160 | . . . . 5 ā¢ 1st :VāontoāV | |
2 | fofn 5442 | . . . . 5 ā¢ (1st :VāontoāV ā 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ā¢ 1st Fn V |
4 | ssv 3179 | . . . 4 ā¢ š“ ā V | |
5 | fnssres 5331 | . . . 4 ā¢ ((1st Fn V ā§ š“ ā V) ā (1st ā¾ š“) Fn š“) | |
6 | 3, 4, 5 | mp2an 426 | . . 3 ā¢ (1st ā¾ š“) Fn š“ |
7 | eluniimadm 5768 | . . 3 ā¢ ((1st ā¾ š“) Fn š“ ā (šµ ā āŖ ((1st ā¾ š“) ā š“) ā āš„ ā š“ šµ ā ((1st ā¾ š“)āš„))) | |
8 | 6, 7 | ax-mp 5 | . 2 ā¢ (šµ ā āŖ ((1st ā¾ š“) ā š“) ā āš„ ā š“ šµ ā ((1st ā¾ š“)āš„)) |
9 | resima 4942 | . . . 4 ā¢ ((1st ā¾ š“) ā š“) = (1st ā š“) | |
10 | 9 | unieqi 3821 | . . 3 ā¢ āŖ ((1st ā¾ š“) ā š“) = āŖ (1st ā š“) |
11 | 10 | eleq2i 2244 | . 2 ā¢ (šµ ā āŖ ((1st ā¾ š“) ā š“) ā šµ ā āŖ (1st ā š“)) |
12 | fvres 5541 | . . . 4 ā¢ (š„ ā š“ ā ((1st ā¾ š“)āš„) = (1st āš„)) | |
13 | 12 | eleq2d 2247 | . . 3 ā¢ (š„ ā š“ ā (šµ ā ((1st ā¾ š“)āš„) ā šµ ā (1st āš„))) |
14 | 13 | rexbiia 2492 | . 2 ā¢ (āš„ ā š“ šµ ā ((1st ā¾ š“)āš„) ā āš„ ā š“ šµ ā (1st āš„)) |
15 | 8, 11, 14 | 3bitr3i 210 | 1 ā¢ (šµ ā āŖ (1st ā š“) ā āš„ ā š“ šµ ā (1st āš„)) |
Colors of variables: wff set class |
Syntax hints: ā wb 105 ā wcel 2148 āwrex 2456 Vcvv 2739 ā wss 3131 āŖ cuni 3811 ā¾ cres 4630 ā cima 4631 Fn wfn 5213 āontoāwfo 5216 ācfv 5218 1st c1st 6141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fo 5224 df-fv 5226 df-1st 6143 |
This theorem is referenced by: suplocexprlemml 7717 suplocexprlemrl 7718 suplocexprlemdisj 7721 suplocexprlemloc 7722 suplocexprlemex 7723 suplocexprlemlub 7725 |
Copyright terms: Public domain | W3C validator |