ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemell GIF version

Theorem suplocexprlemell 7908
Description: Lemma for suplocexpr 7920. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
Assertion
Ref Expression
suplocexprlemell (𝐵 (1st𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (1st𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem suplocexprlemell
StepHypRef Expression
1 fo1st 6309 . . . . 5 1st :V–onto→V
2 fofn 5552 . . . . 5 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . 4 1st Fn V
4 ssv 3246 . . . 4 𝐴 ⊆ V
5 fnssres 5436 . . . 4 ((1st Fn V ∧ 𝐴 ⊆ V) → (1st𝐴) Fn 𝐴)
63, 4, 5mp2an 426 . . 3 (1st𝐴) Fn 𝐴
7 eluniimadm 5895 . . 3 ((1st𝐴) Fn 𝐴 → (𝐵 ((1st𝐴) “ 𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ ((1st𝐴)‘𝑥)))
86, 7ax-mp 5 . 2 (𝐵 ((1st𝐴) “ 𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ ((1st𝐴)‘𝑥))
9 resima 5038 . . . 4 ((1st𝐴) “ 𝐴) = (1st𝐴)
109unieqi 3898 . . 3 ((1st𝐴) “ 𝐴) = (1st𝐴)
1110eleq2i 2296 . 2 (𝐵 ((1st𝐴) “ 𝐴) ↔ 𝐵 (1st𝐴))
12 fvres 5653 . . . 4 (𝑥𝐴 → ((1st𝐴)‘𝑥) = (1st𝑥))
1312eleq2d 2299 . . 3 (𝑥𝐴 → (𝐵 ∈ ((1st𝐴)‘𝑥) ↔ 𝐵 ∈ (1st𝑥)))
1413rexbiia 2545 . 2 (∃𝑥𝐴 𝐵 ∈ ((1st𝐴)‘𝑥) ↔ ∃𝑥𝐴 𝐵 ∈ (1st𝑥))
158, 11, 143bitr3i 210 1 (𝐵 (1st𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (1st𝑥))
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  wrex 2509  Vcvv 2799  wss 3197   cuni 3888  cres 4721  cima 4722   Fn wfn 5313  ontowfo 5316  cfv 5318  1st c1st 6290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-1st 6292
This theorem is referenced by:  suplocexprlemml  7911  suplocexprlemrl  7912  suplocexprlemdisj  7915  suplocexprlemloc  7916  suplocexprlemex  7917  suplocexprlemlub  7919
  Copyright terms: Public domain W3C validator