Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplocexprlemell | GIF version |
Description: Lemma for suplocexpr 7666. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.) |
Ref | Expression |
---|---|
suplocexprlemell | ⊢ (𝐵 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 6125 | . . . . 5 ⊢ 1st :V–onto→V | |
2 | fofn 5412 | . . . . 5 ⊢ (1st :V–onto→V → 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ 1st Fn V |
4 | ssv 3164 | . . . 4 ⊢ 𝐴 ⊆ V | |
5 | fnssres 5301 | . . . 4 ⊢ ((1st Fn V ∧ 𝐴 ⊆ V) → (1st ↾ 𝐴) Fn 𝐴) | |
6 | 3, 4, 5 | mp2an 423 | . . 3 ⊢ (1st ↾ 𝐴) Fn 𝐴 |
7 | eluniimadm 5733 | . . 3 ⊢ ((1st ↾ 𝐴) Fn 𝐴 → (𝐵 ∈ ∪ ((1st ↾ 𝐴) “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ ((1st ↾ 𝐴)‘𝑥))) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ ∪ ((1st ↾ 𝐴) “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ ((1st ↾ 𝐴)‘𝑥)) |
9 | resima 4917 | . . . 4 ⊢ ((1st ↾ 𝐴) “ 𝐴) = (1st “ 𝐴) | |
10 | 9 | unieqi 3799 | . . 3 ⊢ ∪ ((1st ↾ 𝐴) “ 𝐴) = ∪ (1st “ 𝐴) |
11 | 10 | eleq2i 2233 | . 2 ⊢ (𝐵 ∈ ∪ ((1st ↾ 𝐴) “ 𝐴) ↔ 𝐵 ∈ ∪ (1st “ 𝐴)) |
12 | fvres 5510 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((1st ↾ 𝐴)‘𝑥) = (1st ‘𝑥)) | |
13 | 12 | eleq2d 2236 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ∈ ((1st ↾ 𝐴)‘𝑥) ↔ 𝐵 ∈ (1st ‘𝑥))) |
14 | 13 | rexbiia 2481 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ∈ ((1st ↾ 𝐴)‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) |
15 | 8, 11, 14 | 3bitr3i 209 | 1 ⊢ (𝐵 ∈ ∪ (1st “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ (1st ‘𝑥)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2136 ∃wrex 2445 Vcvv 2726 ⊆ wss 3116 ∪ cuni 3789 ↾ cres 4606 “ cima 4607 Fn wfn 5183 –onto→wfo 5186 ‘cfv 5188 1st c1st 6106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-1st 6108 |
This theorem is referenced by: suplocexprlemml 7657 suplocexprlemrl 7658 suplocexprlemdisj 7661 suplocexprlemloc 7662 suplocexprlemex 7663 suplocexprlemlub 7665 |
Copyright terms: Public domain | W3C validator |