![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recexgt0 | GIF version |
Description: Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.) |
Ref | Expression |
---|---|
recexgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-precex 7984 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) → ∃𝑥 ∈ ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) | |
2 | 0re 8021 | . . . 4 ⊢ 0 ∈ ℝ | |
3 | ltxrlt 8087 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 <ℝ 𝐴)) | |
4 | 2, 3 | mpan 424 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 <ℝ 𝐴)) |
5 | 4 | pm5.32i 454 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴)) |
6 | ltxrlt 8087 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 < 𝑥 ↔ 0 <ℝ 𝑥)) | |
7 | 2, 6 | mpan 424 | . . . 4 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 ↔ 0 <ℝ 𝑥)) |
8 | 7 | anbi1d 465 | . . 3 ⊢ (𝑥 ∈ ℝ → ((0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) ↔ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1))) |
9 | 8 | rexbiia 2509 | . 2 ⊢ (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) ↔ ∃𝑥 ∈ ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) |
10 | 1, 5, 9 | 3imtr4i 201 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 class class class wbr 4030 (class class class)co 5919 ℝcr 7873 0cc0 7874 1c1 7875 <ℝ cltrr 7878 · cmul 7879 < clt 8056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-rnegex 7983 ax-precex 7984 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-pnf 8058 df-mnf 8059 df-ltxr 8061 |
This theorem is referenced by: ltmul1 8613 |
Copyright terms: Public domain | W3C validator |