Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recexgt0 | GIF version |
Description: Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.) |
Ref | Expression |
---|---|
recexgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-precex 7871 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴) → ∃𝑥 ∈ ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) | |
2 | 0re 7907 | . . . 4 ⊢ 0 ∈ ℝ | |
3 | ltxrlt 7972 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 <ℝ 𝐴)) | |
4 | 2, 3 | mpan 422 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 <ℝ 𝐴)) |
5 | 4 | pm5.32i 451 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℝ ∧ 0 <ℝ 𝐴)) |
6 | ltxrlt 7972 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 < 𝑥 ↔ 0 <ℝ 𝑥)) | |
7 | 2, 6 | mpan 422 | . . . 4 ⊢ (𝑥 ∈ ℝ → (0 < 𝑥 ↔ 0 <ℝ 𝑥)) |
8 | 7 | anbi1d 462 | . . 3 ⊢ (𝑥 ∈ ℝ → ((0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) ↔ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1))) |
9 | 8 | rexbiia 2485 | . 2 ⊢ (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) ↔ ∃𝑥 ∈ ℝ (0 <ℝ 𝑥 ∧ (𝐴 · 𝑥) = 1)) |
10 | 1, 5, 9 | 3imtr4i 200 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 class class class wbr 3987 (class class class)co 5850 ℝcr 7760 0cc0 7761 1c1 7762 <ℝ cltrr 7765 · cmul 7766 < clt 7941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1re 7855 ax-addrcl 7858 ax-rnegex 7870 ax-precex 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-xp 4615 df-pnf 7943 df-mnf 7944 df-ltxr 7946 |
This theorem is referenced by: ltmul1 8498 |
Copyright terms: Public domain | W3C validator |