ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmres GIF version

Theorem lmres 14568
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmres.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmres.4 (𝜑𝐹 ∈ (𝑋pm ℂ))
lmres.5 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
lmres (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃))

Proof of Theorem lmres
Dummy variables 𝑗 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmres.2 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 toponmax 14345 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
31, 2syl 14 . . . . . 6 (𝜑𝑋𝐽)
4 cnex 8020 . . . . . 6 ℂ ∈ V
5 ssid 3204 . . . . . . 7 𝑋𝑋
6 uzssz 9638 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
7 zsscn 9351 . . . . . . . 8 ℤ ⊆ ℂ
86, 7sstri 3193 . . . . . . 7 (ℤ𝑀) ⊆ ℂ
9 pmss12g 6743 . . . . . . 7 (((𝑋𝑋 ∧ (ℤ𝑀) ⊆ ℂ) ∧ (𝑋𝐽 ∧ ℂ ∈ V)) → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
105, 8, 9mpanl12 436 . . . . . 6 ((𝑋𝐽 ∧ ℂ ∈ V) → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
113, 4, 10sylancl 413 . . . . 5 (𝜑 → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
12 zex 9352 . . . . . . 7 ℤ ∈ V
1312, 6ssexi 4172 . . . . . 6 (ℤ𝑀) ∈ V
14 lmres.4 . . . . . 6 (𝜑𝐹 ∈ (𝑋pm ℂ))
15 pmresg 6744 . . . . . 6 (((ℤ𝑀) ∈ V ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm (ℤ𝑀)))
1613, 14, 15sylancr 414 . . . . 5 (𝜑 → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm (ℤ𝑀)))
1711, 16sseldd 3185 . . . 4 (𝜑 → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ))
1817, 142thd 175 . . 3 (𝜑 → ((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ↔ 𝐹 ∈ (𝑋pm ℂ)))
19 eqid 2196 . . . . . . . . . 10 (ℤ𝑀) = (ℤ𝑀)
2019uztrn2 9636 . . . . . . . . 9 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑀))
21 dmres 4968 . . . . . . . . . . . 12 dom (𝐹 ↾ (ℤ𝑀)) = ((ℤ𝑀) ∩ dom 𝐹)
2221elin2 3352 . . . . . . . . . . 11 (𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑘 ∈ dom 𝐹))
2322baib 920 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ↔ 𝑘 ∈ dom 𝐹))
24 fvres 5585 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → ((𝐹 ↾ (ℤ𝑀))‘𝑘) = (𝐹𝑘))
2524eleq1d 2265 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → (((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ 𝑢))
2623, 25anbi12d 473 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → ((𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2720, 26syl 14 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2827ralbidva 2493 . . . . . . 7 (𝑗 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2928rexbiia 2512 . . . . . 6 (∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
3029imbi2i 226 . . . . 5 ((𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3130ralbii 2503 . . . 4 (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3231a1i 9 . . 3 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3318, 323anbi13d 1325 . 2 (𝜑 → (((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢))) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
34 lmres.5 . . 3 (𝜑𝑀 ∈ ℤ)
351, 19, 34lmbr2 14534 . 2 (𝜑 → ((𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃 ↔ ((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)))))
361, 19, 34lmbr2 14534 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
3733, 35, 363bitr4rd 221 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  wss 3157   class class class wbr 4034  dom cdm 4664  cres 4666  cfv 5259  (class class class)co 5925  pm cpm 6717  cc 7894  cz 9343  cuz 9618  TopOnctopon 14330  𝑡clm 14507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pm 6719  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-top 14318  df-topon 14331  df-lm 14510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator