| Step | Hyp | Ref
| Expression |
| 1 | | lmres.2 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | toponmax 14261 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
| 3 | 1, 2 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| 4 | | cnex 8003 |
. . . . . 6
⊢ ℂ
∈ V |
| 5 | | ssid 3203 |
. . . . . . 7
⊢ 𝑋 ⊆ 𝑋 |
| 6 | | uzssz 9621 |
. . . . . . . 8
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
| 7 | | zsscn 9334 |
. . . . . . . 8
⊢ ℤ
⊆ ℂ |
| 8 | 6, 7 | sstri 3192 |
. . . . . . 7
⊢
(ℤ≥‘𝑀) ⊆ ℂ |
| 9 | | pmss12g 6734 |
. . . . . . 7
⊢ (((𝑋 ⊆ 𝑋 ∧ (ℤ≥‘𝑀) ⊆ ℂ) ∧ (𝑋 ∈ 𝐽 ∧ ℂ ∈ V)) → (𝑋 ↑pm
(ℤ≥‘𝑀)) ⊆ (𝑋 ↑pm
ℂ)) |
| 10 | 5, 8, 9 | mpanl12 436 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐽 ∧ ℂ ∈ V) → (𝑋 ↑pm
(ℤ≥‘𝑀)) ⊆ (𝑋 ↑pm
ℂ)) |
| 11 | 3, 4, 10 | sylancl 413 |
. . . . 5
⊢ (𝜑 → (𝑋 ↑pm
(ℤ≥‘𝑀)) ⊆ (𝑋 ↑pm
ℂ)) |
| 12 | | zex 9335 |
. . . . . . 7
⊢ ℤ
∈ V |
| 13 | 12, 6 | ssexi 4171 |
. . . . . 6
⊢
(ℤ≥‘𝑀) ∈ V |
| 14 | | lmres.4 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
| 15 | | pmresg 6735 |
. . . . . 6
⊢
(((ℤ≥‘𝑀) ∈ V ∧ 𝐹 ∈ (𝑋 ↑pm ℂ)) →
(𝐹 ↾
(ℤ≥‘𝑀)) ∈ (𝑋 ↑pm
(ℤ≥‘𝑀))) |
| 16 | 13, 14, 15 | sylancr 414 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ (𝑋 ↑pm
(ℤ≥‘𝑀))) |
| 17 | 11, 16 | sseldd 3184 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ (𝑋 ↑pm
ℂ)) |
| 18 | 17, 14 | 2thd 175 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑀)) ∈ (𝑋 ↑pm ℂ) ↔
𝐹 ∈ (𝑋 ↑pm
ℂ))) |
| 19 | | eqid 2196 |
. . . . . . . . . 10
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
| 20 | 19 | uztrn2 9619 |
. . . . . . . . 9
⊢ ((𝑗 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 21 | | dmres 4967 |
. . . . . . . . . . . 12
⊢ dom
(𝐹 ↾
(ℤ≥‘𝑀)) = ((ℤ≥‘𝑀) ∩ dom 𝐹) |
| 22 | 21 | elin2 3351 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ dom (𝐹 ↾ (ℤ≥‘𝑀)) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ dom 𝐹)) |
| 23 | 22 | baib 920 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ dom (𝐹 ↾ (ℤ≥‘𝑀)) ↔ 𝑘 ∈ dom 𝐹)) |
| 24 | | fvres 5582 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) = (𝐹‘𝑘)) |
| 25 | 24 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ 𝑢)) |
| 26 | 23, 25 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → ((𝑘 ∈ dom (𝐹 ↾ (ℤ≥‘𝑀)) ∧ ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
| 27 | 20, 26 | syl 14 |
. . . . . . . 8
⊢ ((𝑗 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom (𝐹 ↾ (ℤ≥‘𝑀)) ∧ ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
| 28 | 27 | ralbidva 2493 |
. . . . . . 7
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ≥‘𝑀)) ∧ ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
| 29 | 28 | rexbiia 2512 |
. . . . . 6
⊢
(∃𝑗 ∈
(ℤ≥‘𝑀)∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ≥‘𝑀)) ∧ ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) |
| 30 | 29 | imbi2i 226 |
. . . . 5
⊢ ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ≥‘𝑀)) ∧ ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) ∈ 𝑢)) ↔ (𝑃 ∈ 𝑢 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
| 31 | 30 | ralbii 2503 |
. . . 4
⊢
(∀𝑢 ∈
𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ≥‘𝑀)) ∧ ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) ∈ 𝑢)) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
| 32 | 31 | a1i 9 |
. . 3
⊢ (𝜑 → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ≥‘𝑀)) ∧ ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) ∈ 𝑢)) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
| 33 | 18, 32 | 3anbi13d 1325 |
. 2
⊢ (𝜑 → (((𝐹 ↾ (ℤ≥‘𝑀)) ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ≥‘𝑀)) ∧ ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) ∈ 𝑢))) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
| 34 | | lmres.5 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 35 | 1, 19, 34 | lmbr2 14450 |
. 2
⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑀))(⇝𝑡‘𝐽)𝑃 ↔ ((𝐹 ↾ (ℤ≥‘𝑀)) ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ≥‘𝑀)) ∧ ((𝐹 ↾ (ℤ≥‘𝑀))‘𝑘) ∈ 𝑢))))) |
| 36 | 1, 19, 34 | lmbr2 14450 |
. 2
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
| 37 | 33, 35, 36 | 3bitr4rd 221 |
1
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ↾ (ℤ≥‘𝑀))(⇝𝑡‘𝐽)𝑃)) |