Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmres GIF version

Theorem lmres 12431
 Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmres.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmres.4 (𝜑𝐹 ∈ (𝑋pm ℂ))
lmres.5 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
lmres (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃))

Proof of Theorem lmres
Dummy variables 𝑗 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmres.2 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 toponmax 12206 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
31, 2syl 14 . . . . . 6 (𝜑𝑋𝐽)
4 cnex 7756 . . . . . 6 ℂ ∈ V
5 ssid 3117 . . . . . . 7 𝑋𝑋
6 uzssz 9357 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
7 zsscn 9074 . . . . . . . 8 ℤ ⊆ ℂ
86, 7sstri 3106 . . . . . . 7 (ℤ𝑀) ⊆ ℂ
9 pmss12g 6569 . . . . . . 7 (((𝑋𝑋 ∧ (ℤ𝑀) ⊆ ℂ) ∧ (𝑋𝐽 ∧ ℂ ∈ V)) → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
105, 8, 9mpanl12 432 . . . . . 6 ((𝑋𝐽 ∧ ℂ ∈ V) → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
113, 4, 10sylancl 409 . . . . 5 (𝜑 → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
12 zex 9075 . . . . . . 7 ℤ ∈ V
1312, 6ssexi 4066 . . . . . 6 (ℤ𝑀) ∈ V
14 lmres.4 . . . . . 6 (𝜑𝐹 ∈ (𝑋pm ℂ))
15 pmresg 6570 . . . . . 6 (((ℤ𝑀) ∈ V ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm (ℤ𝑀)))
1613, 14, 15sylancr 410 . . . . 5 (𝜑 → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm (ℤ𝑀)))
1711, 16sseldd 3098 . . . 4 (𝜑 → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ))
1817, 142thd 174 . . 3 (𝜑 → ((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ↔ 𝐹 ∈ (𝑋pm ℂ)))
19 eqid 2139 . . . . . . . . . 10 (ℤ𝑀) = (ℤ𝑀)
2019uztrn2 9355 . . . . . . . . 9 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑀))
21 dmres 4840 . . . . . . . . . . . 12 dom (𝐹 ↾ (ℤ𝑀)) = ((ℤ𝑀) ∩ dom 𝐹)
2221elin2 3264 . . . . . . . . . . 11 (𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑘 ∈ dom 𝐹))
2322baib 904 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ↔ 𝑘 ∈ dom 𝐹))
24 fvres 5445 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → ((𝐹 ↾ (ℤ𝑀))‘𝑘) = (𝐹𝑘))
2524eleq1d 2208 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → (((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ 𝑢))
2623, 25anbi12d 464 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → ((𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2720, 26syl 14 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2827ralbidva 2433 . . . . . . 7 (𝑗 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2928rexbiia 2450 . . . . . 6 (∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
3029imbi2i 225 . . . . 5 ((𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3130ralbii 2441 . . . 4 (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3231a1i 9 . . 3 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3318, 323anbi13d 1292 . 2 (𝜑 → (((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢))) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
34 lmres.5 . . 3 (𝜑𝑀 ∈ ℤ)
351, 19, 34lmbr2 12397 . 2 (𝜑 → ((𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃 ↔ ((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)))))
361, 19, 34lmbr2 12397 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
3733, 35, 363bitr4rd 220 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   ∈ wcel 1480  ∀wral 2416  ∃wrex 2417  Vcvv 2686   ⊆ wss 3071   class class class wbr 3929  dom cdm 4539   ↾ cres 4541  ‘cfv 5123  (class class class)co 5774   ↑pm cpm 6543  ℂcc 7630  ℤcz 9066  ℤ≥cuz 9338  TopOnctopon 12191  ⇝𝑡clm 12370 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pm 6545  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-uz 9339  df-top 12179  df-topon 12192  df-lm 12373 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator