ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmres GIF version

Theorem lmres 12431
Description: A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
lmres.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmres.4 (𝜑𝐹 ∈ (𝑋pm ℂ))
lmres.5 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
lmres (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃))

Proof of Theorem lmres
Dummy variables 𝑗 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmres.2 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 toponmax 12206 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
31, 2syl 14 . . . . . 6 (𝜑𝑋𝐽)
4 cnex 7756 . . . . . 6 ℂ ∈ V
5 ssid 3117 . . . . . . 7 𝑋𝑋
6 uzssz 9357 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
7 zsscn 9074 . . . . . . . 8 ℤ ⊆ ℂ
86, 7sstri 3106 . . . . . . 7 (ℤ𝑀) ⊆ ℂ
9 pmss12g 6569 . . . . . . 7 (((𝑋𝑋 ∧ (ℤ𝑀) ⊆ ℂ) ∧ (𝑋𝐽 ∧ ℂ ∈ V)) → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
105, 8, 9mpanl12 432 . . . . . 6 ((𝑋𝐽 ∧ ℂ ∈ V) → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
113, 4, 10sylancl 409 . . . . 5 (𝜑 → (𝑋pm (ℤ𝑀)) ⊆ (𝑋pm ℂ))
12 zex 9075 . . . . . . 7 ℤ ∈ V
1312, 6ssexi 4066 . . . . . 6 (ℤ𝑀) ∈ V
14 lmres.4 . . . . . 6 (𝜑𝐹 ∈ (𝑋pm ℂ))
15 pmresg 6570 . . . . . 6 (((ℤ𝑀) ∈ V ∧ 𝐹 ∈ (𝑋pm ℂ)) → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm (ℤ𝑀)))
1613, 14, 15sylancr 410 . . . . 5 (𝜑 → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm (ℤ𝑀)))
1711, 16sseldd 3098 . . . 4 (𝜑 → (𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ))
1817, 142thd 174 . . 3 (𝜑 → ((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ↔ 𝐹 ∈ (𝑋pm ℂ)))
19 eqid 2139 . . . . . . . . . 10 (ℤ𝑀) = (ℤ𝑀)
2019uztrn2 9355 . . . . . . . . 9 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑀))
21 dmres 4840 . . . . . . . . . . . 12 dom (𝐹 ↾ (ℤ𝑀)) = ((ℤ𝑀) ∩ dom 𝐹)
2221elin2 3264 . . . . . . . . . . 11 (𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑘 ∈ dom 𝐹))
2322baib 904 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ↔ 𝑘 ∈ dom 𝐹))
24 fvres 5445 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → ((𝐹 ↾ (ℤ𝑀))‘𝑘) = (𝐹𝑘))
2524eleq1d 2208 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → (((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ 𝑢))
2623, 25anbi12d 464 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑀) → ((𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2720, 26syl 14 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2827ralbidva 2433 . . . . . . 7 (𝑗 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2928rexbiia 2450 . . . . . 6 (∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
3029imbi2i 225 . . . . 5 ((𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3130ralbii 2441 . . . 4 (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
3231a1i 9 . . 3 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3318, 323anbi13d 1292 . 2 (𝜑 → (((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢))) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
34 lmres.5 . . 3 (𝜑𝑀 ∈ ℤ)
351, 19, 34lmbr2 12397 . 2 (𝜑 → ((𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃 ↔ ((𝐹 ↾ (ℤ𝑀)) ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐹 ↾ (ℤ𝑀)) ∧ ((𝐹 ↾ (ℤ𝑀))‘𝑘) ∈ 𝑢)))))
361, 19, 34lmbr2 12397 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ (ℤ𝑀)∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
3733, 35, 363bitr4rd 220 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wcel 1480  wral 2416  wrex 2417  Vcvv 2686  wss 3071   class class class wbr 3929  dom cdm 4539  cres 4541  cfv 5123  (class class class)co 5774  pm cpm 6543  cc 7630  cz 9066  cuz 9338  TopOnctopon 12191  𝑡clm 12370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pm 6545  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-uz 9339  df-top 12179  df-topon 12192  df-lm 12373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator