ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioocosf1o GIF version

Theorem ioocosf1o 14278
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
Assertion
Ref Expression
ioocosf1o (cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1)

Proof of Theorem ioocosf1o
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cosf 11713 . . . . . 6 cos:ℂ⟶ℂ
2 ffn 5366 . . . . . 6 (cos:ℂ⟶ℂ → cos Fn ℂ)
31, 2ax-mp 5 . . . . 5 cos Fn ℂ
4 ioossre 9935 . . . . . 6 (0(,)π) ⊆ ℝ
5 ax-resscn 7903 . . . . . 6 ℝ ⊆ ℂ
64, 5sstri 3165 . . . . 5 (0(,)π) ⊆ ℂ
7 fnssres 5330 . . . . 5 ((cos Fn ℂ ∧ (0(,)π) ⊆ ℂ) → (cos ↾ (0(,)π)) Fn (0(,)π))
83, 6, 7mp2an 426 . . . 4 (cos ↾ (0(,)π)) Fn (0(,)π)
9 fvres 5540 . . . . . 6 (𝑥 ∈ (0(,)π) → ((cos ↾ (0(,)π))‘𝑥) = (cos‘𝑥))
10 cos0pilt1 14276 . . . . . 6 (𝑥 ∈ (0(,)π) → (cos‘𝑥) ∈ (-1(,)1))
119, 10eqeltrd 2254 . . . . 5 (𝑥 ∈ (0(,)π) → ((cos ↾ (0(,)π))‘𝑥) ∈ (-1(,)1))
1211rgen 2530 . . . 4 𝑥 ∈ (0(,)π)((cos ↾ (0(,)π))‘𝑥) ∈ (-1(,)1)
13 ffnfv 5675 . . . 4 ((cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1) ↔ ((cos ↾ (0(,)π)) Fn (0(,)π) ∧ ∀𝑥 ∈ (0(,)π)((cos ↾ (0(,)π))‘𝑥) ∈ (-1(,)1)))
148, 12, 13mpbir2an 942 . . 3 (cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1)
15 fvres 5540 . . . . . 6 (𝑦 ∈ (0(,)π) → ((cos ↾ (0(,)π))‘𝑦) = (cos‘𝑦))
169, 15eqeqan12d 2193 . . . . 5 ((𝑥 ∈ (0(,)π) ∧ 𝑦 ∈ (0(,)π)) → (((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) ↔ (cos‘𝑥) = (cos‘𝑦)))
17 ioossicc 9959 . . . . . . 7 (0(,)π) ⊆ (0[,]π)
1817sseli 3152 . . . . . 6 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (0[,]π))
1917sseli 3152 . . . . . 6 (𝑦 ∈ (0(,)π) → 𝑦 ∈ (0[,]π))
20 cos11 14277 . . . . . . 7 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 = 𝑦 ↔ (cos‘𝑥) = (cos‘𝑦)))
2120biimprd 158 . . . . . 6 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦))
2218, 19, 21syl2an 289 . . . . 5 ((𝑥 ∈ (0(,)π) ∧ 𝑦 ∈ (0(,)π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦))
2316, 22sylbid 150 . . . 4 ((𝑥 ∈ (0(,)π) ∧ 𝑦 ∈ (0(,)π)) → (((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) → 𝑥 = 𝑦))
2423rgen2 2563 . . 3 𝑥 ∈ (0(,)π)∀𝑦 ∈ (0(,)π)(((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) → 𝑥 = 𝑦)
25 dff13 5769 . . 3 ((cos ↾ (0(,)π)):(0(,)π)–1-1→(-1(,)1) ↔ ((cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1) ∧ ∀𝑥 ∈ (0(,)π)∀𝑦 ∈ (0(,)π)(((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) → 𝑥 = 𝑦)))
2614, 24, 25mpbir2an 942 . 2 (cos ↾ (0(,)π)):(0(,)π)–1-1→(-1(,)1)
27 0red 7958 . . . . . 6 (𝑥 ∈ (-1(,)1) → 0 ∈ ℝ)
28 pire 14210 . . . . . . 7 π ∈ ℝ
2928a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → π ∈ ℝ)
30 elioore 9912 . . . . . 6 (𝑥 ∈ (-1(,)1) → 𝑥 ∈ ℝ)
31 pipos 14212 . . . . . . 7 0 < π
3231a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → 0 < π)
33 0re 7957 . . . . . . . . 9 0 ∈ ℝ
34 iccssre 9955 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
3533, 28, 34mp2an 426 . . . . . . . 8 (0[,]π) ⊆ ℝ
3635, 5sstri 3165 . . . . . . 7 (0[,]π) ⊆ ℂ
3736a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → (0[,]π) ⊆ ℂ)
38 coscn 14194 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
3938a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → cos ∈ (ℂ–cn→ℂ))
4035sseli 3152 . . . . . . . 8 (𝑧 ∈ (0[,]π) → 𝑧 ∈ ℝ)
4140recoscld 11732 . . . . . . 7 (𝑧 ∈ (0[,]π) → (cos‘𝑧) ∈ ℝ)
4241adantl 277 . . . . . 6 ((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) → (cos‘𝑧) ∈ ℝ)
43 cospi 14224 . . . . . . . 8 (cos‘π) = -1
44 neg1rr 9025 . . . . . . . . . . 11 -1 ∈ ℝ
4544rexri 8015 . . . . . . . . . 10 -1 ∈ ℝ*
46 1re 7956 . . . . . . . . . . 11 1 ∈ ℝ
4746rexri 8015 . . . . . . . . . 10 1 ∈ ℝ*
48 elioo2 9921 . . . . . . . . . 10 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 ∈ (-1(,)1) ↔ (𝑥 ∈ ℝ ∧ -1 < 𝑥𝑥 < 1)))
4945, 47, 48mp2an 426 . . . . . . . . 9 (𝑥 ∈ (-1(,)1) ↔ (𝑥 ∈ ℝ ∧ -1 < 𝑥𝑥 < 1))
5049simp2bi 1013 . . . . . . . 8 (𝑥 ∈ (-1(,)1) → -1 < 𝑥)
5143, 50eqbrtrid 4039 . . . . . . 7 (𝑥 ∈ (-1(,)1) → (cos‘π) < 𝑥)
5249simp3bi 1014 . . . . . . . 8 (𝑥 ∈ (-1(,)1) → 𝑥 < 1)
53 cos0 11738 . . . . . . . 8 (cos‘0) = 1
5452, 53breqtrrdi 4046 . . . . . . 7 (𝑥 ∈ (-1(,)1) → 𝑥 < (cos‘0))
5551, 54jca 306 . . . . . 6 (𝑥 ∈ (-1(,)1) → ((cos‘π) < 𝑥𝑥 < (cos‘0)))
56 simplr 528 . . . . . . 7 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → 𝑧 ∈ (0[,]π))
57 simprl 529 . . . . . . 7 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → 𝑤 ∈ (0[,]π))
58 simprr 531 . . . . . . 7 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → 𝑧 < 𝑤)
5956, 57, 58cosordlem 14273 . . . . . 6 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → (cos‘𝑤) < (cos‘𝑧))
6027, 29, 30, 32, 37, 39, 42, 55, 59ivthdec 14125 . . . . 5 (𝑥 ∈ (-1(,)1) → ∃𝑦 ∈ (0(,)π)(cos‘𝑦) = 𝑥)
61 eqcom 2179 . . . . . . 7 (𝑥 = ((cos ↾ (0(,)π))‘𝑦) ↔ ((cos ↾ (0(,)π))‘𝑦) = 𝑥)
6215eqeq1d 2186 . . . . . . 7 (𝑦 ∈ (0(,)π) → (((cos ↾ (0(,)π))‘𝑦) = 𝑥 ↔ (cos‘𝑦) = 𝑥))
6361, 62bitrid 192 . . . . . 6 (𝑦 ∈ (0(,)π) → (𝑥 = ((cos ↾ (0(,)π))‘𝑦) ↔ (cos‘𝑦) = 𝑥))
6463rexbiia 2492 . . . . 5 (∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦) ↔ ∃𝑦 ∈ (0(,)π)(cos‘𝑦) = 𝑥)
6560, 64sylibr 134 . . . 4 (𝑥 ∈ (-1(,)1) → ∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦))
6665rgen 2530 . . 3 𝑥 ∈ (-1(,)1)∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦)
67 dffo3 5664 . . 3 ((cos ↾ (0(,)π)):(0(,)π)–onto→(-1(,)1) ↔ ((cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1) ∧ ∀𝑥 ∈ (-1(,)1)∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦)))
6814, 66, 67mpbir2an 942 . 2 (cos ↾ (0(,)π)):(0(,)π)–onto→(-1(,)1)
69 df-f1o 5224 . 2 ((cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1) ↔ ((cos ↾ (0(,)π)):(0(,)π)–1-1→(-1(,)1) ∧ (cos ↾ (0(,)π)):(0(,)π)–onto→(-1(,)1)))
7026, 68, 69mpbir2an 942 1 (cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3130   class class class wbr 4004  cres 4629   Fn wfn 5212  wf 5213  1-1wf1 5214  ontowfo 5215  1-1-ontowf1o 5216  cfv 5217  (class class class)co 5875  cc 7809  cr 7810  0cc0 7811  1c1 7812  *cxr 7991   < clt 7992  -cneg 8129  (,)cioo 9888  [,]cicc 9891  cosccos 11653  πcpi 11655  cnccncf 14060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931  ax-pre-suploc 7932  ax-addf 7933  ax-mulf 7934
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-disj 3982  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-of 6083  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-map 6650  df-pm 6651  df-en 6741  df-dom 6742  df-fin 6743  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-7 8983  df-8 8984  df-9 8985  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-xneg 9772  df-xadd 9773  df-ioo 9892  df-ioc 9893  df-ico 9894  df-icc 9895  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-fac 10706  df-bc 10728  df-ihash 10756  df-shft 10824  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362  df-ef 11656  df-sin 11658  df-cos 11659  df-pi 11661  df-rest 12690  df-topgen 12709  df-psmet 13450  df-xmet 13451  df-met 13452  df-bl 13453  df-mopn 13454  df-top 13501  df-topon 13514  df-bases 13546  df-ntr 13599  df-cn 13691  df-cnp 13692  df-tx 13756  df-cncf 14061  df-limced 14128  df-dvap 14129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator