Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioocosf1o GIF version

Theorem ioocosf1o 12983
 Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
Assertion
Ref Expression
ioocosf1o (cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1)

Proof of Theorem ioocosf1o
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cosf 11448 . . . . . 6 cos:ℂ⟶ℂ
2 ffn 5280 . . . . . 6 (cos:ℂ⟶ℂ → cos Fn ℂ)
31, 2ax-mp 5 . . . . 5 cos Fn ℂ
4 ioossre 9748 . . . . . 6 (0(,)π) ⊆ ℝ
5 ax-resscn 7736 . . . . . 6 ℝ ⊆ ℂ
64, 5sstri 3111 . . . . 5 (0(,)π) ⊆ ℂ
7 fnssres 5244 . . . . 5 ((cos Fn ℂ ∧ (0(,)π) ⊆ ℂ) → (cos ↾ (0(,)π)) Fn (0(,)π))
83, 6, 7mp2an 423 . . . 4 (cos ↾ (0(,)π)) Fn (0(,)π)
9 fvres 5453 . . . . . 6 (𝑥 ∈ (0(,)π) → ((cos ↾ (0(,)π))‘𝑥) = (cos‘𝑥))
10 cos0pilt1 12981 . . . . . 6 (𝑥 ∈ (0(,)π) → (cos‘𝑥) ∈ (-1(,)1))
119, 10eqeltrd 2217 . . . . 5 (𝑥 ∈ (0(,)π) → ((cos ↾ (0(,)π))‘𝑥) ∈ (-1(,)1))
1211rgen 2488 . . . 4 𝑥 ∈ (0(,)π)((cos ↾ (0(,)π))‘𝑥) ∈ (-1(,)1)
13 ffnfv 5586 . . . 4 ((cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1) ↔ ((cos ↾ (0(,)π)) Fn (0(,)π) ∧ ∀𝑥 ∈ (0(,)π)((cos ↾ (0(,)π))‘𝑥) ∈ (-1(,)1)))
148, 12, 13mpbir2an 927 . . 3 (cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1)
15 fvres 5453 . . . . . 6 (𝑦 ∈ (0(,)π) → ((cos ↾ (0(,)π))‘𝑦) = (cos‘𝑦))
169, 15eqeqan12d 2156 . . . . 5 ((𝑥 ∈ (0(,)π) ∧ 𝑦 ∈ (0(,)π)) → (((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) ↔ (cos‘𝑥) = (cos‘𝑦)))
17 ioossicc 9772 . . . . . . 7 (0(,)π) ⊆ (0[,]π)
1817sseli 3098 . . . . . 6 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (0[,]π))
1917sseli 3098 . . . . . 6 (𝑦 ∈ (0(,)π) → 𝑦 ∈ (0[,]π))
20 cos11 12982 . . . . . . 7 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 = 𝑦 ↔ (cos‘𝑥) = (cos‘𝑦)))
2120biimprd 157 . . . . . 6 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦))
2218, 19, 21syl2an 287 . . . . 5 ((𝑥 ∈ (0(,)π) ∧ 𝑦 ∈ (0(,)π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦))
2316, 22sylbid 149 . . . 4 ((𝑥 ∈ (0(,)π) ∧ 𝑦 ∈ (0(,)π)) → (((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) → 𝑥 = 𝑦))
2423rgen2 2521 . . 3 𝑥 ∈ (0(,)π)∀𝑦 ∈ (0(,)π)(((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) → 𝑥 = 𝑦)
25 dff13 5677 . . 3 ((cos ↾ (0(,)π)):(0(,)π)–1-1→(-1(,)1) ↔ ((cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1) ∧ ∀𝑥 ∈ (0(,)π)∀𝑦 ∈ (0(,)π)(((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) → 𝑥 = 𝑦)))
2614, 24, 25mpbir2an 927 . 2 (cos ↾ (0(,)π)):(0(,)π)–1-1→(-1(,)1)
27 0red 7791 . . . . . 6 (𝑥 ∈ (-1(,)1) → 0 ∈ ℝ)
28 pire 12915 . . . . . . 7 π ∈ ℝ
2928a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → π ∈ ℝ)
30 elioore 9725 . . . . . 6 (𝑥 ∈ (-1(,)1) → 𝑥 ∈ ℝ)
31 pipos 12917 . . . . . . 7 0 < π
3231a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → 0 < π)
33 0re 7790 . . . . . . . . 9 0 ∈ ℝ
34 iccssre 9768 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
3533, 28, 34mp2an 423 . . . . . . . 8 (0[,]π) ⊆ ℝ
3635, 5sstri 3111 . . . . . . 7 (0[,]π) ⊆ ℂ
3736a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → (0[,]π) ⊆ ℂ)
38 coscn 12899 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
3938a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → cos ∈ (ℂ–cn→ℂ))
4035sseli 3098 . . . . . . . 8 (𝑧 ∈ (0[,]π) → 𝑧 ∈ ℝ)
4140recoscld 11467 . . . . . . 7 (𝑧 ∈ (0[,]π) → (cos‘𝑧) ∈ ℝ)
4241adantl 275 . . . . . 6 ((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) → (cos‘𝑧) ∈ ℝ)
43 cospi 12929 . . . . . . . 8 (cos‘π) = -1
44 neg1rr 8850 . . . . . . . . . . 11 -1 ∈ ℝ
4544rexri 7847 . . . . . . . . . 10 -1 ∈ ℝ*
46 1re 7789 . . . . . . . . . . 11 1 ∈ ℝ
4746rexri 7847 . . . . . . . . . 10 1 ∈ ℝ*
48 elioo2 9734 . . . . . . . . . 10 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 ∈ (-1(,)1) ↔ (𝑥 ∈ ℝ ∧ -1 < 𝑥𝑥 < 1)))
4945, 47, 48mp2an 423 . . . . . . . . 9 (𝑥 ∈ (-1(,)1) ↔ (𝑥 ∈ ℝ ∧ -1 < 𝑥𝑥 < 1))
5049simp2bi 998 . . . . . . . 8 (𝑥 ∈ (-1(,)1) → -1 < 𝑥)
5143, 50eqbrtrid 3971 . . . . . . 7 (𝑥 ∈ (-1(,)1) → (cos‘π) < 𝑥)
5249simp3bi 999 . . . . . . . 8 (𝑥 ∈ (-1(,)1) → 𝑥 < 1)
53 cos0 11473 . . . . . . . 8 (cos‘0) = 1
5452, 53breqtrrdi 3978 . . . . . . 7 (𝑥 ∈ (-1(,)1) → 𝑥 < (cos‘0))
5551, 54jca 304 . . . . . 6 (𝑥 ∈ (-1(,)1) → ((cos‘π) < 𝑥𝑥 < (cos‘0)))
56 simplr 520 . . . . . . 7 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → 𝑧 ∈ (0[,]π))
57 simprl 521 . . . . . . 7 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → 𝑤 ∈ (0[,]π))
58 simprr 522 . . . . . . 7 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → 𝑧 < 𝑤)
5956, 57, 58cosordlem 12978 . . . . . 6 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → (cos‘𝑤) < (cos‘𝑧))
6027, 29, 30, 32, 37, 39, 42, 55, 59ivthdec 12830 . . . . 5 (𝑥 ∈ (-1(,)1) → ∃𝑦 ∈ (0(,)π)(cos‘𝑦) = 𝑥)
61 eqcom 2142 . . . . . . 7 (𝑥 = ((cos ↾ (0(,)π))‘𝑦) ↔ ((cos ↾ (0(,)π))‘𝑦) = 𝑥)
6215eqeq1d 2149 . . . . . . 7 (𝑦 ∈ (0(,)π) → (((cos ↾ (0(,)π))‘𝑦) = 𝑥 ↔ (cos‘𝑦) = 𝑥))
6361, 62syl5bb 191 . . . . . 6 (𝑦 ∈ (0(,)π) → (𝑥 = ((cos ↾ (0(,)π))‘𝑦) ↔ (cos‘𝑦) = 𝑥))
6463rexbiia 2453 . . . . 5 (∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦) ↔ ∃𝑦 ∈ (0(,)π)(cos‘𝑦) = 𝑥)
6560, 64sylibr 133 . . . 4 (𝑥 ∈ (-1(,)1) → ∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦))
6665rgen 2488 . . 3 𝑥 ∈ (-1(,)1)∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦)
67 dffo3 5575 . . 3 ((cos ↾ (0(,)π)):(0(,)π)–onto→(-1(,)1) ↔ ((cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1) ∧ ∀𝑥 ∈ (-1(,)1)∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦)))
6814, 66, 67mpbir2an 927 . 2 (cos ↾ (0(,)π)):(0(,)π)–onto→(-1(,)1)
69 df-f1o 5138 . 2 ((cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1) ↔ ((cos ↾ (0(,)π)):(0(,)π)–1-1→(-1(,)1) ∧ (cos ↾ (0(,)π)):(0(,)π)–onto→(-1(,)1)))
7026, 68, 69mpbir2an 927 1 (cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  ∀wral 2417  ∃wrex 2418   ⊆ wss 3076   class class class wbr 3937   ↾ cres 4549   Fn wfn 5126  ⟶wf 5127  –1-1→wf1 5128  –onto→wfo 5129  –1-1-onto→wf1o 5130  ‘cfv 5131  (class class class)co 5782  ℂcc 7642  ℝcr 7643  0cc0 7644  1c1 7645  ℝ*cxr 7823   < clt 7824  -cneg 7958  (,)cioo 9701  [,]cicc 9704  cosccos 11388  πcpi 11390  –cn→ccncf 12765 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764  ax-pre-suploc 7765  ax-addf 7766  ax-mulf 7767 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-map 6552  df-pm 6553  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-9 8810  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-ioo 9705  df-ioc 9706  df-ico 9707  df-icc 9708  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-sin 11393  df-cos 11394  df-pi 11396  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-ntr 12304  df-cn 12396  df-cnp 12397  df-tx 12461  df-cncf 12766  df-limced 12833  df-dvap 12834 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator