ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioocosf1o GIF version

Theorem ioocosf1o 15493
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
Assertion
Ref Expression
ioocosf1o (cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1)

Proof of Theorem ioocosf1o
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cosf 12182 . . . . . 6 cos:ℂ⟶ℂ
2 ffn 5449 . . . . . 6 (cos:ℂ⟶ℂ → cos Fn ℂ)
31, 2ax-mp 5 . . . . 5 cos Fn ℂ
4 ioossre 10099 . . . . . 6 (0(,)π) ⊆ ℝ
5 ax-resscn 8059 . . . . . 6 ℝ ⊆ ℂ
64, 5sstri 3213 . . . . 5 (0(,)π) ⊆ ℂ
7 fnssres 5412 . . . . 5 ((cos Fn ℂ ∧ (0(,)π) ⊆ ℂ) → (cos ↾ (0(,)π)) Fn (0(,)π))
83, 6, 7mp2an 426 . . . 4 (cos ↾ (0(,)π)) Fn (0(,)π)
9 fvres 5627 . . . . . 6 (𝑥 ∈ (0(,)π) → ((cos ↾ (0(,)π))‘𝑥) = (cos‘𝑥))
10 cos0pilt1 15491 . . . . . 6 (𝑥 ∈ (0(,)π) → (cos‘𝑥) ∈ (-1(,)1))
119, 10eqeltrd 2286 . . . . 5 (𝑥 ∈ (0(,)π) → ((cos ↾ (0(,)π))‘𝑥) ∈ (-1(,)1))
1211rgen 2563 . . . 4 𝑥 ∈ (0(,)π)((cos ↾ (0(,)π))‘𝑥) ∈ (-1(,)1)
13 ffnfv 5766 . . . 4 ((cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1) ↔ ((cos ↾ (0(,)π)) Fn (0(,)π) ∧ ∀𝑥 ∈ (0(,)π)((cos ↾ (0(,)π))‘𝑥) ∈ (-1(,)1)))
148, 12, 13mpbir2an 947 . . 3 (cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1)
15 fvres 5627 . . . . . 6 (𝑦 ∈ (0(,)π) → ((cos ↾ (0(,)π))‘𝑦) = (cos‘𝑦))
169, 15eqeqan12d 2225 . . . . 5 ((𝑥 ∈ (0(,)π) ∧ 𝑦 ∈ (0(,)π)) → (((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) ↔ (cos‘𝑥) = (cos‘𝑦)))
17 ioossicc 10123 . . . . . . 7 (0(,)π) ⊆ (0[,]π)
1817sseli 3200 . . . . . 6 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (0[,]π))
1917sseli 3200 . . . . . 6 (𝑦 ∈ (0(,)π) → 𝑦 ∈ (0[,]π))
20 cos11 15492 . . . . . . 7 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 = 𝑦 ↔ (cos‘𝑥) = (cos‘𝑦)))
2120biimprd 158 . . . . . 6 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦))
2218, 19, 21syl2an 289 . . . . 5 ((𝑥 ∈ (0(,)π) ∧ 𝑦 ∈ (0(,)π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦))
2316, 22sylbid 150 . . . 4 ((𝑥 ∈ (0(,)π) ∧ 𝑦 ∈ (0(,)π)) → (((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) → 𝑥 = 𝑦))
2423rgen2 2596 . . 3 𝑥 ∈ (0(,)π)∀𝑦 ∈ (0(,)π)(((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) → 𝑥 = 𝑦)
25 dff13 5865 . . 3 ((cos ↾ (0(,)π)):(0(,)π)–1-1→(-1(,)1) ↔ ((cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1) ∧ ∀𝑥 ∈ (0(,)π)∀𝑦 ∈ (0(,)π)(((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) → 𝑥 = 𝑦)))
2614, 24, 25mpbir2an 947 . 2 (cos ↾ (0(,)π)):(0(,)π)–1-1→(-1(,)1)
27 0red 8115 . . . . . 6 (𝑥 ∈ (-1(,)1) → 0 ∈ ℝ)
28 pire 15425 . . . . . . 7 π ∈ ℝ
2928a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → π ∈ ℝ)
30 elioore 10076 . . . . . 6 (𝑥 ∈ (-1(,)1) → 𝑥 ∈ ℝ)
31 pipos 15427 . . . . . . 7 0 < π
3231a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → 0 < π)
33 0re 8114 . . . . . . . . 9 0 ∈ ℝ
34 iccssre 10119 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
3533, 28, 34mp2an 426 . . . . . . . 8 (0[,]π) ⊆ ℝ
3635, 5sstri 3213 . . . . . . 7 (0[,]π) ⊆ ℂ
3736a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → (0[,]π) ⊆ ℂ)
38 coscn 15409 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
3938a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → cos ∈ (ℂ–cn→ℂ))
4035sseli 3200 . . . . . . . 8 (𝑧 ∈ (0[,]π) → 𝑧 ∈ ℝ)
4140recoscld 12201 . . . . . . 7 (𝑧 ∈ (0[,]π) → (cos‘𝑧) ∈ ℝ)
4241adantl 277 . . . . . 6 ((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) → (cos‘𝑧) ∈ ℝ)
43 cospi 15439 . . . . . . . 8 (cos‘π) = -1
44 neg1rr 9184 . . . . . . . . . . 11 -1 ∈ ℝ
4544rexri 8172 . . . . . . . . . 10 -1 ∈ ℝ*
46 1re 8113 . . . . . . . . . . 11 1 ∈ ℝ
4746rexri 8172 . . . . . . . . . 10 1 ∈ ℝ*
48 elioo2 10085 . . . . . . . . . 10 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 ∈ (-1(,)1) ↔ (𝑥 ∈ ℝ ∧ -1 < 𝑥𝑥 < 1)))
4945, 47, 48mp2an 426 . . . . . . . . 9 (𝑥 ∈ (-1(,)1) ↔ (𝑥 ∈ ℝ ∧ -1 < 𝑥𝑥 < 1))
5049simp2bi 1018 . . . . . . . 8 (𝑥 ∈ (-1(,)1) → -1 < 𝑥)
5143, 50eqbrtrid 4097 . . . . . . 7 (𝑥 ∈ (-1(,)1) → (cos‘π) < 𝑥)
5249simp3bi 1019 . . . . . . . 8 (𝑥 ∈ (-1(,)1) → 𝑥 < 1)
53 cos0 12207 . . . . . . . 8 (cos‘0) = 1
5452, 53breqtrrdi 4104 . . . . . . 7 (𝑥 ∈ (-1(,)1) → 𝑥 < (cos‘0))
5551, 54jca 306 . . . . . 6 (𝑥 ∈ (-1(,)1) → ((cos‘π) < 𝑥𝑥 < (cos‘0)))
56 simplr 528 . . . . . . 7 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → 𝑧 ∈ (0[,]π))
57 simprl 529 . . . . . . 7 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → 𝑤 ∈ (0[,]π))
58 simprr 531 . . . . . . 7 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → 𝑧 < 𝑤)
5956, 57, 58cosordlem 15488 . . . . . 6 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → (cos‘𝑤) < (cos‘𝑧))
6027, 29, 30, 32, 37, 39, 42, 55, 59ivthdec 15283 . . . . 5 (𝑥 ∈ (-1(,)1) → ∃𝑦 ∈ (0(,)π)(cos‘𝑦) = 𝑥)
61 eqcom 2211 . . . . . . 7 (𝑥 = ((cos ↾ (0(,)π))‘𝑦) ↔ ((cos ↾ (0(,)π))‘𝑦) = 𝑥)
6215eqeq1d 2218 . . . . . . 7 (𝑦 ∈ (0(,)π) → (((cos ↾ (0(,)π))‘𝑦) = 𝑥 ↔ (cos‘𝑦) = 𝑥))
6361, 62bitrid 192 . . . . . 6 (𝑦 ∈ (0(,)π) → (𝑥 = ((cos ↾ (0(,)π))‘𝑦) ↔ (cos‘𝑦) = 𝑥))
6463rexbiia 2525 . . . . 5 (∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦) ↔ ∃𝑦 ∈ (0(,)π)(cos‘𝑦) = 𝑥)
6560, 64sylibr 134 . . . 4 (𝑥 ∈ (-1(,)1) → ∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦))
6665rgen 2563 . . 3 𝑥 ∈ (-1(,)1)∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦)
67 dffo3 5755 . . 3 ((cos ↾ (0(,)π)):(0(,)π)–onto→(-1(,)1) ↔ ((cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1) ∧ ∀𝑥 ∈ (-1(,)1)∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦)))
6814, 66, 67mpbir2an 947 . 2 (cos ↾ (0(,)π)):(0(,)π)–onto→(-1(,)1)
69 df-f1o 5301 . 2 ((cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1) ↔ ((cos ↾ (0(,)π)):(0(,)π)–1-1→(-1(,)1) ∧ (cos ↾ (0(,)π)):(0(,)π)–onto→(-1(,)1)))
7026, 68, 69mpbir2an 947 1 (cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  wral 2488  wrex 2489  wss 3177   class class class wbr 4062  cres 4698   Fn wfn 5289  wf 5290  1-1wf1 5291  ontowfo 5292  1-1-ontowf1o 5293  cfv 5294  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967  1c1 7968  *cxr 8148   < clt 8149  -cneg 8286  (,)cioo 10052  [,]cicc 10055  cosccos 12122  πcpi 12124  cnccncf 15209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-pre-suploc 8088  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-disj 4039  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-map 6767  df-pm 6768  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-ioo 10056  df-ioc 10057  df-ico 10058  df-icc 10059  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-fac 10915  df-bc 10937  df-ihash 10965  df-shft 11292  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ef 12125  df-sin 12127  df-cos 12128  df-pi 12130  df-rest 13240  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-top 14637  df-topon 14650  df-bases 14682  df-ntr 14735  df-cn 14827  df-cnp 14828  df-tx 14892  df-cncf 15210  df-limced 15295  df-dvap 15296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator