ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioocosf1o GIF version

Theorem ioocosf1o 13415
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
Assertion
Ref Expression
ioocosf1o (cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1)

Proof of Theorem ioocosf1o
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cosf 11646 . . . . . 6 cos:ℂ⟶ℂ
2 ffn 5337 . . . . . 6 (cos:ℂ⟶ℂ → cos Fn ℂ)
31, 2ax-mp 5 . . . . 5 cos Fn ℂ
4 ioossre 9871 . . . . . 6 (0(,)π) ⊆ ℝ
5 ax-resscn 7845 . . . . . 6 ℝ ⊆ ℂ
64, 5sstri 3151 . . . . 5 (0(,)π) ⊆ ℂ
7 fnssres 5301 . . . . 5 ((cos Fn ℂ ∧ (0(,)π) ⊆ ℂ) → (cos ↾ (0(,)π)) Fn (0(,)π))
83, 6, 7mp2an 423 . . . 4 (cos ↾ (0(,)π)) Fn (0(,)π)
9 fvres 5510 . . . . . 6 (𝑥 ∈ (0(,)π) → ((cos ↾ (0(,)π))‘𝑥) = (cos‘𝑥))
10 cos0pilt1 13413 . . . . . 6 (𝑥 ∈ (0(,)π) → (cos‘𝑥) ∈ (-1(,)1))
119, 10eqeltrd 2243 . . . . 5 (𝑥 ∈ (0(,)π) → ((cos ↾ (0(,)π))‘𝑥) ∈ (-1(,)1))
1211rgen 2519 . . . 4 𝑥 ∈ (0(,)π)((cos ↾ (0(,)π))‘𝑥) ∈ (-1(,)1)
13 ffnfv 5643 . . . 4 ((cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1) ↔ ((cos ↾ (0(,)π)) Fn (0(,)π) ∧ ∀𝑥 ∈ (0(,)π)((cos ↾ (0(,)π))‘𝑥) ∈ (-1(,)1)))
148, 12, 13mpbir2an 932 . . 3 (cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1)
15 fvres 5510 . . . . . 6 (𝑦 ∈ (0(,)π) → ((cos ↾ (0(,)π))‘𝑦) = (cos‘𝑦))
169, 15eqeqan12d 2181 . . . . 5 ((𝑥 ∈ (0(,)π) ∧ 𝑦 ∈ (0(,)π)) → (((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) ↔ (cos‘𝑥) = (cos‘𝑦)))
17 ioossicc 9895 . . . . . . 7 (0(,)π) ⊆ (0[,]π)
1817sseli 3138 . . . . . 6 (𝑥 ∈ (0(,)π) → 𝑥 ∈ (0[,]π))
1917sseli 3138 . . . . . 6 (𝑦 ∈ (0(,)π) → 𝑦 ∈ (0[,]π))
20 cos11 13414 . . . . . . 7 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → (𝑥 = 𝑦 ↔ (cos‘𝑥) = (cos‘𝑦)))
2120biimprd 157 . . . . . 6 ((𝑥 ∈ (0[,]π) ∧ 𝑦 ∈ (0[,]π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦))
2218, 19, 21syl2an 287 . . . . 5 ((𝑥 ∈ (0(,)π) ∧ 𝑦 ∈ (0(,)π)) → ((cos‘𝑥) = (cos‘𝑦) → 𝑥 = 𝑦))
2316, 22sylbid 149 . . . 4 ((𝑥 ∈ (0(,)π) ∧ 𝑦 ∈ (0(,)π)) → (((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) → 𝑥 = 𝑦))
2423rgen2 2552 . . 3 𝑥 ∈ (0(,)π)∀𝑦 ∈ (0(,)π)(((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) → 𝑥 = 𝑦)
25 dff13 5736 . . 3 ((cos ↾ (0(,)π)):(0(,)π)–1-1→(-1(,)1) ↔ ((cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1) ∧ ∀𝑥 ∈ (0(,)π)∀𝑦 ∈ (0(,)π)(((cos ↾ (0(,)π))‘𝑥) = ((cos ↾ (0(,)π))‘𝑦) → 𝑥 = 𝑦)))
2614, 24, 25mpbir2an 932 . 2 (cos ↾ (0(,)π)):(0(,)π)–1-1→(-1(,)1)
27 0red 7900 . . . . . 6 (𝑥 ∈ (-1(,)1) → 0 ∈ ℝ)
28 pire 13347 . . . . . . 7 π ∈ ℝ
2928a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → π ∈ ℝ)
30 elioore 9848 . . . . . 6 (𝑥 ∈ (-1(,)1) → 𝑥 ∈ ℝ)
31 pipos 13349 . . . . . . 7 0 < π
3231a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → 0 < π)
33 0re 7899 . . . . . . . . 9 0 ∈ ℝ
34 iccssre 9891 . . . . . . . . 9 ((0 ∈ ℝ ∧ π ∈ ℝ) → (0[,]π) ⊆ ℝ)
3533, 28, 34mp2an 423 . . . . . . . 8 (0[,]π) ⊆ ℝ
3635, 5sstri 3151 . . . . . . 7 (0[,]π) ⊆ ℂ
3736a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → (0[,]π) ⊆ ℂ)
38 coscn 13331 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
3938a1i 9 . . . . . 6 (𝑥 ∈ (-1(,)1) → cos ∈ (ℂ–cn→ℂ))
4035sseli 3138 . . . . . . . 8 (𝑧 ∈ (0[,]π) → 𝑧 ∈ ℝ)
4140recoscld 11665 . . . . . . 7 (𝑧 ∈ (0[,]π) → (cos‘𝑧) ∈ ℝ)
4241adantl 275 . . . . . 6 ((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) → (cos‘𝑧) ∈ ℝ)
43 cospi 13361 . . . . . . . 8 (cos‘π) = -1
44 neg1rr 8963 . . . . . . . . . . 11 -1 ∈ ℝ
4544rexri 7956 . . . . . . . . . 10 -1 ∈ ℝ*
46 1re 7898 . . . . . . . . . . 11 1 ∈ ℝ
4746rexri 7956 . . . . . . . . . 10 1 ∈ ℝ*
48 elioo2 9857 . . . . . . . . . 10 ((-1 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 ∈ (-1(,)1) ↔ (𝑥 ∈ ℝ ∧ -1 < 𝑥𝑥 < 1)))
4945, 47, 48mp2an 423 . . . . . . . . 9 (𝑥 ∈ (-1(,)1) ↔ (𝑥 ∈ ℝ ∧ -1 < 𝑥𝑥 < 1))
5049simp2bi 1003 . . . . . . . 8 (𝑥 ∈ (-1(,)1) → -1 < 𝑥)
5143, 50eqbrtrid 4017 . . . . . . 7 (𝑥 ∈ (-1(,)1) → (cos‘π) < 𝑥)
5249simp3bi 1004 . . . . . . . 8 (𝑥 ∈ (-1(,)1) → 𝑥 < 1)
53 cos0 11671 . . . . . . . 8 (cos‘0) = 1
5452, 53breqtrrdi 4024 . . . . . . 7 (𝑥 ∈ (-1(,)1) → 𝑥 < (cos‘0))
5551, 54jca 304 . . . . . 6 (𝑥 ∈ (-1(,)1) → ((cos‘π) < 𝑥𝑥 < (cos‘0)))
56 simplr 520 . . . . . . 7 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → 𝑧 ∈ (0[,]π))
57 simprl 521 . . . . . . 7 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → 𝑤 ∈ (0[,]π))
58 simprr 522 . . . . . . 7 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → 𝑧 < 𝑤)
5956, 57, 58cosordlem 13410 . . . . . 6 (((𝑥 ∈ (-1(,)1) ∧ 𝑧 ∈ (0[,]π)) ∧ (𝑤 ∈ (0[,]π) ∧ 𝑧 < 𝑤)) → (cos‘𝑤) < (cos‘𝑧))
6027, 29, 30, 32, 37, 39, 42, 55, 59ivthdec 13262 . . . . 5 (𝑥 ∈ (-1(,)1) → ∃𝑦 ∈ (0(,)π)(cos‘𝑦) = 𝑥)
61 eqcom 2167 . . . . . . 7 (𝑥 = ((cos ↾ (0(,)π))‘𝑦) ↔ ((cos ↾ (0(,)π))‘𝑦) = 𝑥)
6215eqeq1d 2174 . . . . . . 7 (𝑦 ∈ (0(,)π) → (((cos ↾ (0(,)π))‘𝑦) = 𝑥 ↔ (cos‘𝑦) = 𝑥))
6361, 62syl5bb 191 . . . . . 6 (𝑦 ∈ (0(,)π) → (𝑥 = ((cos ↾ (0(,)π))‘𝑦) ↔ (cos‘𝑦) = 𝑥))
6463rexbiia 2481 . . . . 5 (∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦) ↔ ∃𝑦 ∈ (0(,)π)(cos‘𝑦) = 𝑥)
6560, 64sylibr 133 . . . 4 (𝑥 ∈ (-1(,)1) → ∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦))
6665rgen 2519 . . 3 𝑥 ∈ (-1(,)1)∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦)
67 dffo3 5632 . . 3 ((cos ↾ (0(,)π)):(0(,)π)–onto→(-1(,)1) ↔ ((cos ↾ (0(,)π)):(0(,)π)⟶(-1(,)1) ∧ ∀𝑥 ∈ (-1(,)1)∃𝑦 ∈ (0(,)π)𝑥 = ((cos ↾ (0(,)π))‘𝑦)))
6814, 66, 67mpbir2an 932 . 2 (cos ↾ (0(,)π)):(0(,)π)–onto→(-1(,)1)
69 df-f1o 5195 . 2 ((cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1) ↔ ((cos ↾ (0(,)π)):(0(,)π)–1-1→(-1(,)1) ∧ (cos ↾ (0(,)π)):(0(,)π)–onto→(-1(,)1)))
7026, 68, 69mpbir2an 932 1 (cos ↾ (0(,)π)):(0(,)π)–1-1-onto→(-1(,)1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wral 2444  wrex 2445  wss 3116   class class class wbr 3982  cres 4606   Fn wfn 5183  wf 5184  1-1wf1 5185  ontowfo 5186  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754  *cxr 7932   < clt 7933  -cneg 8070  (,)cioo 9824  [,]cicc 9827  cosccos 11586  πcpi 11588  cnccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-ioc 9829  df-ico 9830  df-icc 9831  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-sin 11591  df-cos 11592  df-pi 11594  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator