ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem3 GIF version

Theorem prarloclem3 7609
Description: Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7615. (Contributed by Jim Kingdon, 27-Oct-2019.)
Assertion
Ref Expression
prarloclem3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Distinct variable groups:   𝐴,𝑗,𝑦   𝑗,𝐿,𝑦   𝑃,𝑗,𝑦   𝑈,𝑗,𝑦   𝑦,𝑋
Allowed substitution hint:   𝑋(𝑗)

Proof of Theorem prarloclem3
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → 𝑋 ∈ ω)
2 simpll 527 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → ⟨𝐿, 𝑈⟩ ∈ P)
3 simplr 528 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → 𝐴𝐿)
4 simprr 531 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → 𝑃Q)
5 oveq2 5951 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑦 +o 2o) +o 𝑥) = ((𝑦 +o 2o) +o 𝑋))
65opeq1d 3824 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ⟨((𝑦 +o 2o) +o 𝑥), 1o⟩ = ⟨((𝑦 +o 2o) +o 𝑋), 1o⟩)
76eceq1d 6655 . . . . . . . . . . . 12 (𝑥 = 𝑋 → [⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )
87oveq1d 5958 . . . . . . . . . . 11 (𝑥 = 𝑋 → ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
98oveq2d 5959 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
109eleq1d 2273 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
1110anbi2d 464 . . . . . . . 8 (𝑥 = 𝑋 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
1211rexbidv 2506 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
1312imbi1d 231 . . . . . 6 (𝑥 = 𝑋 → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
1413imbi2d 230 . . . . 5 (𝑥 = 𝑋 → (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))))
15 oveq2 5951 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑦 +o 2o) +o 𝑥) = ((𝑦 +o 2o) +o ∅))
1615opeq1d 3824 . . . . . . . . . . . . 13 (𝑥 = ∅ → ⟨((𝑦 +o 2o) +o 𝑥), 1o⟩ = ⟨((𝑦 +o 2o) +o ∅), 1o⟩)
1716eceq1d 6655 . . . . . . . . . . . 12 (𝑥 = ∅ → [⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q )
1817oveq1d 5958 . . . . . . . . . . 11 (𝑥 = ∅ → ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃))
1918oveq2d 5959 . . . . . . . . . 10 (𝑥 = ∅ → (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)))
2019eleq1d 2273 . . . . . . . . 9 (𝑥 = ∅ → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
2120anbi2d 464 . . . . . . . 8 (𝑥 = ∅ → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
2221rexbidv 2506 . . . . . . 7 (𝑥 = ∅ → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
2322imbi1d 231 . . . . . 6 (𝑥 = ∅ → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
24 oveq2 5951 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑦 +o 2o) +o 𝑥) = ((𝑦 +o 2o) +o 𝑧))
2524opeq1d 3824 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ⟨((𝑦 +o 2o) +o 𝑥), 1o⟩ = ⟨((𝑦 +o 2o) +o 𝑧), 1o⟩)
2625eceq1d 6655 . . . . . . . . . . . 12 (𝑥 = 𝑧 → [⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q )
2726oveq1d 5958 . . . . . . . . . . 11 (𝑥 = 𝑧 → ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃))
2827oveq2d 5959 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)))
2928eleq1d 2273 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
3029anbi2d 464 . . . . . . . 8 (𝑥 = 𝑧 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
3130rexbidv 2506 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
3231imbi1d 231 . . . . . 6 (𝑥 = 𝑧 → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
33 oveq2 5951 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑧 → ((𝑦 +o 2o) +o 𝑥) = ((𝑦 +o 2o) +o suc 𝑧))
3433opeq1d 3824 . . . . . . . . . . . . 13 (𝑥 = suc 𝑧 → ⟨((𝑦 +o 2o) +o 𝑥), 1o⟩ = ⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩)
3534eceq1d 6655 . . . . . . . . . . . 12 (𝑥 = suc 𝑧 → [⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q )
3635oveq1d 5958 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃))
3736oveq2d 5959 . . . . . . . . . 10 (𝑥 = suc 𝑧 → (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)))
3837eleq1d 2273 . . . . . . . . 9 (𝑥 = suc 𝑧 → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
3938anbi2d 464 . . . . . . . 8 (𝑥 = suc 𝑧 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
4039rexbidv 2506 . . . . . . 7 (𝑥 = suc 𝑧 → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
4140imbi1d 231 . . . . . 6 (𝑥 = suc 𝑧 → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
42 2onn 6606 . . . . . . . . . . . . . . . . 17 2o ∈ ω
43 nnacl 6565 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ω ∧ 2o ∈ ω) → (𝑦 +o 2o) ∈ ω)
44 nna0 6559 . . . . . . . . . . . . . . . . . 18 ((𝑦 +o 2o) ∈ ω → ((𝑦 +o 2o) +o ∅) = (𝑦 +o 2o))
4543, 44syl 14 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ω ∧ 2o ∈ ω) → ((𝑦 +o 2o) +o ∅) = (𝑦 +o 2o))
4642, 45mpan2 425 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ω → ((𝑦 +o 2o) +o ∅) = (𝑦 +o 2o))
4746opeq1d 3824 . . . . . . . . . . . . . . 15 (𝑦 ∈ ω → ⟨((𝑦 +o 2o) +o ∅), 1o⟩ = ⟨(𝑦 +o 2o), 1o⟩)
4847eceq1d 6655 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → [⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q = [⟨(𝑦 +o 2o), 1o⟩] ~Q )
4948oveq1d 5958 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃) = ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃))
5049oveq2d 5959 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)))
5150eleq1d 2273 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
5251anbi2d 464 . . . . . . . . . 10 (𝑦 ∈ ω → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
5352rexbiia 2520 . . . . . . . . 9 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
54 opeq1 3818 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ⟨𝑦, 1o⟩ = ⟨𝑗, 1o⟩)
5554eceq1d 6655 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → [⟨𝑦, 1o⟩] ~Q0 = [⟨𝑗, 1o⟩] ~Q0 )
5655oveq1d 5958 . . . . . . . . . . . . 13 (𝑦 = 𝑗 → ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃) = ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃))
5756oveq2d 5959 . . . . . . . . . . . 12 (𝑦 = 𝑗 → (𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) = (𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)))
5857eleq1d 2273 . . . . . . . . . . 11 (𝑦 = 𝑗 → ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
59 oveq1 5950 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑗 → (𝑦 +o 2o) = (𝑗 +o 2o))
6059opeq1d 3824 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ⟨(𝑦 +o 2o), 1o⟩ = ⟨(𝑗 +o 2o), 1o⟩)
6160eceq1d 6655 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → [⟨(𝑦 +o 2o), 1o⟩] ~Q = [⟨(𝑗 +o 2o), 1o⟩] ~Q )
6261oveq1d 5958 . . . . . . . . . . . . 13 (𝑦 = 𝑗 → ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃) = ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃))
6362oveq2d 5959 . . . . . . . . . . . 12 (𝑦 = 𝑗 → (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)))
6463eleq1d 2273 . . . . . . . . . . 11 (𝑦 = 𝑗 → ((𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6558, 64anbi12d 473 . . . . . . . . . 10 (𝑦 = 𝑗 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
6665cbvrexv 2738 . . . . . . . . 9 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6753, 66bitri 184 . . . . . . . 8 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6867biimpi 120 . . . . . . 7 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6968a1i 9 . . . . . 6 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
70 prarloclem3step 7608 . . . . . . . . 9 (((𝑧 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
7170ex 115 . . . . . . . 8 ((𝑧 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
7271imim1d 75 . . . . . . 7 ((𝑧 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
7372ex 115 . . . . . 6 (𝑧 ∈ ω → ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))))
7423, 32, 41, 69, 73finds2 4648 . . . . 5 (𝑥 ∈ ω → ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
7514, 74vtoclga 2838 . . . 4 (𝑋 ∈ ω → ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
7675imp 124 . . 3 ((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
771, 2, 3, 4, 76syl13anc 1251 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
78773impia 1202 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  wrex 2484  c0 3459  cop 3635  suc csuc 4411  ωcom 4637  (class class class)co 5943  1oc1o 6494  2oc2o 6495   +o coa 6498  [cec 6617   ~Q ceq 7391  Qcnq 7392   +Q cplq 7394   ·Q cmq 7395   ~Q0 ceq0 7398   +Q0 cplq0 7401   ·Q0 cmq0 7402  Pcnp 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-plq0 7539  df-mq0 7540  df-inp 7578
This theorem is referenced by:  prarloclem4  7610
  Copyright terms: Public domain W3C validator