ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem3 GIF version

Theorem prarloclem3 7438
Description: Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7444. (Contributed by Jim Kingdon, 27-Oct-2019.)
Assertion
Ref Expression
prarloclem3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Distinct variable groups:   𝐴,𝑗,𝑦   𝑗,𝐿,𝑦   𝑃,𝑗,𝑦   𝑈,𝑗,𝑦   𝑦,𝑋
Allowed substitution hint:   𝑋(𝑗)

Proof of Theorem prarloclem3
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 521 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → 𝑋 ∈ ω)
2 simpll 519 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → ⟨𝐿, 𝑈⟩ ∈ P)
3 simplr 520 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → 𝐴𝐿)
4 simprr 522 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → 𝑃Q)
5 oveq2 5850 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑦 +o 2o) +o 𝑥) = ((𝑦 +o 2o) +o 𝑋))
65opeq1d 3764 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ⟨((𝑦 +o 2o) +o 𝑥), 1o⟩ = ⟨((𝑦 +o 2o) +o 𝑋), 1o⟩)
76eceq1d 6537 . . . . . . . . . . . 12 (𝑥 = 𝑋 → [⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )
87oveq1d 5857 . . . . . . . . . . 11 (𝑥 = 𝑋 → ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
98oveq2d 5858 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
109eleq1d 2235 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
1110anbi2d 460 . . . . . . . 8 (𝑥 = 𝑋 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
1211rexbidv 2467 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
1312imbi1d 230 . . . . . 6 (𝑥 = 𝑋 → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
1413imbi2d 229 . . . . 5 (𝑥 = 𝑋 → (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))))
15 oveq2 5850 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑦 +o 2o) +o 𝑥) = ((𝑦 +o 2o) +o ∅))
1615opeq1d 3764 . . . . . . . . . . . . 13 (𝑥 = ∅ → ⟨((𝑦 +o 2o) +o 𝑥), 1o⟩ = ⟨((𝑦 +o 2o) +o ∅), 1o⟩)
1716eceq1d 6537 . . . . . . . . . . . 12 (𝑥 = ∅ → [⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q )
1817oveq1d 5857 . . . . . . . . . . 11 (𝑥 = ∅ → ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃))
1918oveq2d 5858 . . . . . . . . . 10 (𝑥 = ∅ → (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)))
2019eleq1d 2235 . . . . . . . . 9 (𝑥 = ∅ → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
2120anbi2d 460 . . . . . . . 8 (𝑥 = ∅ → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
2221rexbidv 2467 . . . . . . 7 (𝑥 = ∅ → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
2322imbi1d 230 . . . . . 6 (𝑥 = ∅ → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
24 oveq2 5850 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑦 +o 2o) +o 𝑥) = ((𝑦 +o 2o) +o 𝑧))
2524opeq1d 3764 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ⟨((𝑦 +o 2o) +o 𝑥), 1o⟩ = ⟨((𝑦 +o 2o) +o 𝑧), 1o⟩)
2625eceq1d 6537 . . . . . . . . . . . 12 (𝑥 = 𝑧 → [⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q )
2726oveq1d 5857 . . . . . . . . . . 11 (𝑥 = 𝑧 → ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃))
2827oveq2d 5858 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)))
2928eleq1d 2235 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
3029anbi2d 460 . . . . . . . 8 (𝑥 = 𝑧 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
3130rexbidv 2467 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
3231imbi1d 230 . . . . . 6 (𝑥 = 𝑧 → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
33 oveq2 5850 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑧 → ((𝑦 +o 2o) +o 𝑥) = ((𝑦 +o 2o) +o suc 𝑧))
3433opeq1d 3764 . . . . . . . . . . . . 13 (𝑥 = suc 𝑧 → ⟨((𝑦 +o 2o) +o 𝑥), 1o⟩ = ⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩)
3534eceq1d 6537 . . . . . . . . . . . 12 (𝑥 = suc 𝑧 → [⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q = [⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q )
3635oveq1d 5857 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃))
3736oveq2d 5858 . . . . . . . . . 10 (𝑥 = suc 𝑧 → (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)))
3837eleq1d 2235 . . . . . . . . 9 (𝑥 = suc 𝑧 → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
3938anbi2d 460 . . . . . . . 8 (𝑥 = suc 𝑧 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
4039rexbidv 2467 . . . . . . 7 (𝑥 = suc 𝑧 → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
4140imbi1d 230 . . . . . 6 (𝑥 = suc 𝑧 → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
42 2onn 6489 . . . . . . . . . . . . . . . . 17 2o ∈ ω
43 nnacl 6448 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ω ∧ 2o ∈ ω) → (𝑦 +o 2o) ∈ ω)
44 nna0 6442 . . . . . . . . . . . . . . . . . 18 ((𝑦 +o 2o) ∈ ω → ((𝑦 +o 2o) +o ∅) = (𝑦 +o 2o))
4543, 44syl 14 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ω ∧ 2o ∈ ω) → ((𝑦 +o 2o) +o ∅) = (𝑦 +o 2o))
4642, 45mpan2 422 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ω → ((𝑦 +o 2o) +o ∅) = (𝑦 +o 2o))
4746opeq1d 3764 . . . . . . . . . . . . . . 15 (𝑦 ∈ ω → ⟨((𝑦 +o 2o) +o ∅), 1o⟩ = ⟨(𝑦 +o 2o), 1o⟩)
4847eceq1d 6537 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → [⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q = [⟨(𝑦 +o 2o), 1o⟩] ~Q )
4948oveq1d 5857 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃) = ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃))
5049oveq2d 5858 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)))
5150eleq1d 2235 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
5251anbi2d 460 . . . . . . . . . 10 (𝑦 ∈ ω → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
5352rexbiia 2481 . . . . . . . . 9 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
54 opeq1 3758 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ⟨𝑦, 1o⟩ = ⟨𝑗, 1o⟩)
5554eceq1d 6537 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → [⟨𝑦, 1o⟩] ~Q0 = [⟨𝑗, 1o⟩] ~Q0 )
5655oveq1d 5857 . . . . . . . . . . . . 13 (𝑦 = 𝑗 → ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃) = ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃))
5756oveq2d 5858 . . . . . . . . . . . 12 (𝑦 = 𝑗 → (𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) = (𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)))
5857eleq1d 2235 . . . . . . . . . . 11 (𝑦 = 𝑗 → ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
59 oveq1 5849 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑗 → (𝑦 +o 2o) = (𝑗 +o 2o))
6059opeq1d 3764 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ⟨(𝑦 +o 2o), 1o⟩ = ⟨(𝑗 +o 2o), 1o⟩)
6160eceq1d 6537 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → [⟨(𝑦 +o 2o), 1o⟩] ~Q = [⟨(𝑗 +o 2o), 1o⟩] ~Q )
6261oveq1d 5857 . . . . . . . . . . . . 13 (𝑦 = 𝑗 → ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃) = ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃))
6362oveq2d 5858 . . . . . . . . . . . 12 (𝑦 = 𝑗 → (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)))
6463eleq1d 2235 . . . . . . . . . . 11 (𝑦 = 𝑗 → ((𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6558, 64anbi12d 465 . . . . . . . . . 10 (𝑦 = 𝑗 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
6665cbvrexv 2693 . . . . . . . . 9 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6753, 66bitri 183 . . . . . . . 8 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6867biimpi 119 . . . . . . 7 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6968a1i 9 . . . . . 6 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o ∅), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
70 prarloclem3step 7437 . . . . . . . . 9 (((𝑧 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
7170ex 114 . . . . . . . 8 ((𝑧 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
7271imim1d 75 . . . . . . 7 ((𝑧 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
7372ex 114 . . . . . 6 (𝑧 ∈ ω → ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑧), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))))
7423, 32, 41, 69, 73finds2 4578 . . . . 5 (𝑥 ∈ ω → ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
7514, 74vtoclga 2792 . . . 4 (𝑋 ∈ ω → ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
7675imp 123 . . 3 ((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
771, 2, 3, 4, 76syl13anc 1230 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
78773impia 1190 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wrex 2445  c0 3409  cop 3579  suc csuc 4343  ωcom 4567  (class class class)co 5842  1oc1o 6377  2oc2o 6378   +o coa 6381  [cec 6499   ~Q ceq 7220  Qcnq 7221   +Q cplq 7223   ·Q cmq 7224   ~Q0 ceq0 7227   +Q0 cplq0 7230   ·Q0 cmq0 7231  Pcnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-plq0 7368  df-mq0 7369  df-inp 7407
This theorem is referenced by:  prarloclem4  7439
  Copyright terms: Public domain W3C validator