| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > even2n | GIF version | ||
| Description: An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.) |
| Ref | Expression |
|---|---|
| even2n | ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evenelz 12032 | . 2 ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) | |
| 2 | 2z 9354 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℤ) |
| 4 | id 19 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℤ) | |
| 5 | 3, 4 | zmulcld 9454 | . . . . 5 ⊢ (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ) |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → (2 · 𝑛) ∈ ℤ) |
| 7 | eleq1 2259 | . . . . 5 ⊢ ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℤ ↔ 𝑁 ∈ ℤ)) | |
| 8 | 7 | adantl 277 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → ((2 · 𝑛) ∈ ℤ ↔ 𝑁 ∈ ℤ)) |
| 9 | 6, 8 | mpbid 147 | . . 3 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → 𝑁 ∈ ℤ) |
| 10 | 9 | rexlimiva 2609 | . 2 ⊢ (∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁 → 𝑁 ∈ ℤ) |
| 11 | divides 11954 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁)) | |
| 12 | zcn 9331 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 13 | 2cnd 9063 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℂ) | |
| 14 | 12, 13 | mulcomd 8048 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛)) |
| 15 | 14 | eqeq1d 2205 | . . . . 5 ⊢ (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝑁 ↔ (2 · 𝑛) = 𝑁)) |
| 16 | 15 | rexbiia 2512 | . . . 4 ⊢ (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
| 17 | 11, 16 | bitrdi 196 | . . 3 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
| 18 | 2, 17 | mpan 424 | . 2 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
| 19 | 1, 10, 18 | pm5.21nii 705 | 1 ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 class class class wbr 4033 (class class class)co 5922 · cmul 7884 2c2 9041 ℤcz 9326 ∥ cdvds 11952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-dvds 11953 |
| This theorem is referenced by: evennn02n 12047 evennn2n 12048 m1expe 12064 |
| Copyright terms: Public domain | W3C validator |