| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > even2n | GIF version | ||
| Description: An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.) |
| Ref | Expression |
|---|---|
| even2n | ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evenelz 12049 | . 2 ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) | |
| 2 | 2z 9371 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℤ) |
| 4 | id 19 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℤ) | |
| 5 | 3, 4 | zmulcld 9471 | . . . . 5 ⊢ (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ) |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → (2 · 𝑛) ∈ ℤ) |
| 7 | eleq1 2259 | . . . . 5 ⊢ ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℤ ↔ 𝑁 ∈ ℤ)) | |
| 8 | 7 | adantl 277 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → ((2 · 𝑛) ∈ ℤ ↔ 𝑁 ∈ ℤ)) |
| 9 | 6, 8 | mpbid 147 | . . 3 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → 𝑁 ∈ ℤ) |
| 10 | 9 | rexlimiva 2609 | . 2 ⊢ (∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁 → 𝑁 ∈ ℤ) |
| 11 | divides 11971 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁)) | |
| 12 | zcn 9348 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 13 | 2cnd 9080 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℂ) | |
| 14 | 12, 13 | mulcomd 8065 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛)) |
| 15 | 14 | eqeq1d 2205 | . . . . 5 ⊢ (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝑁 ↔ (2 · 𝑛) = 𝑁)) |
| 16 | 15 | rexbiia 2512 | . . . 4 ⊢ (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
| 17 | 11, 16 | bitrdi 196 | . . 3 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
| 18 | 2, 17 | mpan 424 | . 2 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
| 19 | 1, 10, 18 | pm5.21nii 705 | 1 ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 class class class wbr 4034 (class class class)co 5925 · cmul 7901 2c2 9058 ℤcz 9343 ∥ cdvds 11969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-dvds 11970 |
| This theorem is referenced by: evennn02n 12064 evennn2n 12065 m1expe 12081 |
| Copyright terms: Public domain | W3C validator |