ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  even2n GIF version

Theorem even2n 11881
Description: An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.)
Assertion
Ref Expression
even2n (2 โˆฅ ๐‘ โ†” โˆƒ๐‘› โˆˆ โ„ค (2 ยท ๐‘›) = ๐‘)
Distinct variable group:   ๐‘›,๐‘

Proof of Theorem even2n
StepHypRef Expression
1 evenelz 11874 . 2 (2 โˆฅ ๐‘ โ†’ ๐‘ โˆˆ โ„ค)
2 2z 9283 . . . . . . 7 2 โˆˆ โ„ค
32a1i 9 . . . . . 6 (๐‘› โˆˆ โ„ค โ†’ 2 โˆˆ โ„ค)
4 id 19 . . . . . 6 (๐‘› โˆˆ โ„ค โ†’ ๐‘› โˆˆ โ„ค)
53, 4zmulcld 9383 . . . . 5 (๐‘› โˆˆ โ„ค โ†’ (2 ยท ๐‘›) โˆˆ โ„ค)
65adantr 276 . . . 4 ((๐‘› โˆˆ โ„ค โˆง (2 ยท ๐‘›) = ๐‘) โ†’ (2 ยท ๐‘›) โˆˆ โ„ค)
7 eleq1 2240 . . . . 5 ((2 ยท ๐‘›) = ๐‘ โ†’ ((2 ยท ๐‘›) โˆˆ โ„ค โ†” ๐‘ โˆˆ โ„ค))
87adantl 277 . . . 4 ((๐‘› โˆˆ โ„ค โˆง (2 ยท ๐‘›) = ๐‘) โ†’ ((2 ยท ๐‘›) โˆˆ โ„ค โ†” ๐‘ โˆˆ โ„ค))
96, 8mpbid 147 . . 3 ((๐‘› โˆˆ โ„ค โˆง (2 ยท ๐‘›) = ๐‘) โ†’ ๐‘ โˆˆ โ„ค)
109rexlimiva 2589 . 2 (โˆƒ๐‘› โˆˆ โ„ค (2 ยท ๐‘›) = ๐‘ โ†’ ๐‘ โˆˆ โ„ค)
11 divides 11798 . . . 4 ((2 โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (2 โˆฅ ๐‘ โ†” โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท 2) = ๐‘))
12 zcn 9260 . . . . . . 7 (๐‘› โˆˆ โ„ค โ†’ ๐‘› โˆˆ โ„‚)
13 2cnd 8994 . . . . . . 7 (๐‘› โˆˆ โ„ค โ†’ 2 โˆˆ โ„‚)
1412, 13mulcomd 7981 . . . . . 6 (๐‘› โˆˆ โ„ค โ†’ (๐‘› ยท 2) = (2 ยท ๐‘›))
1514eqeq1d 2186 . . . . 5 (๐‘› โˆˆ โ„ค โ†’ ((๐‘› ยท 2) = ๐‘ โ†” (2 ยท ๐‘›) = ๐‘))
1615rexbiia 2492 . . . 4 (โˆƒ๐‘› โˆˆ โ„ค (๐‘› ยท 2) = ๐‘ โ†” โˆƒ๐‘› โˆˆ โ„ค (2 ยท ๐‘›) = ๐‘)
1711, 16bitrdi 196 . . 3 ((2 โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (2 โˆฅ ๐‘ โ†” โˆƒ๐‘› โˆˆ โ„ค (2 ยท ๐‘›) = ๐‘))
182, 17mpan 424 . 2 (๐‘ โˆˆ โ„ค โ†’ (2 โˆฅ ๐‘ โ†” โˆƒ๐‘› โˆˆ โ„ค (2 ยท ๐‘›) = ๐‘))
191, 10, 18pm5.21nii 704 1 (2 โˆฅ ๐‘ โ†” โˆƒ๐‘› โˆˆ โ„ค (2 ยท ๐‘›) = ๐‘)
Colors of variables: wff set class
Syntax hints:   โˆง wa 104   โ†” wb 105   = wceq 1353   โˆˆ wcel 2148  โˆƒwrex 2456   class class class wbr 4005  (class class class)co 5877   ยท cmul 7818  2c2 8972  โ„คcz 9255   โˆฅ cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-dvds 11797
This theorem is referenced by:  evennn02n  11889  evennn2n  11890  m1expe  11906
  Copyright terms: Public domain W3C validator