![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > even2n | GIF version |
Description: An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.) |
Ref | Expression |
---|---|
even2n | ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evenelz 12008 | . 2 ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) | |
2 | 2z 9345 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℤ) |
4 | id 19 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℤ) | |
5 | 3, 4 | zmulcld 9445 | . . . . 5 ⊢ (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ) |
6 | 5 | adantr 276 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → (2 · 𝑛) ∈ ℤ) |
7 | eleq1 2256 | . . . . 5 ⊢ ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℤ ↔ 𝑁 ∈ ℤ)) | |
8 | 7 | adantl 277 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → ((2 · 𝑛) ∈ ℤ ↔ 𝑁 ∈ ℤ)) |
9 | 6, 8 | mpbid 147 | . . 3 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → 𝑁 ∈ ℤ) |
10 | 9 | rexlimiva 2606 | . 2 ⊢ (∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁 → 𝑁 ∈ ℤ) |
11 | divides 11932 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁)) | |
12 | zcn 9322 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
13 | 2cnd 9055 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℂ) | |
14 | 12, 13 | mulcomd 8041 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛)) |
15 | 14 | eqeq1d 2202 | . . . . 5 ⊢ (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝑁 ↔ (2 · 𝑛) = 𝑁)) |
16 | 15 | rexbiia 2509 | . . . 4 ⊢ (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
17 | 11, 16 | bitrdi 196 | . . 3 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
18 | 2, 17 | mpan 424 | . 2 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
19 | 1, 10, 18 | pm5.21nii 705 | 1 ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 class class class wbr 4029 (class class class)co 5918 · cmul 7877 2c2 9033 ℤcz 9317 ∥ cdvds 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-dvds 11931 |
This theorem is referenced by: evennn02n 12023 evennn2n 12024 m1expe 12040 |
Copyright terms: Public domain | W3C validator |