Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > even2n | GIF version |
Description: An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.) |
Ref | Expression |
---|---|
even2n | ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evenelz 11739 | . 2 ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) | |
2 | 2z 9178 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℤ) |
4 | id 19 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℤ) | |
5 | 3, 4 | zmulcld 9275 | . . . . 5 ⊢ (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ) |
6 | 5 | adantr 274 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → (2 · 𝑛) ∈ ℤ) |
7 | eleq1 2220 | . . . . 5 ⊢ ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℤ ↔ 𝑁 ∈ ℤ)) | |
8 | 7 | adantl 275 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → ((2 · 𝑛) ∈ ℤ ↔ 𝑁 ∈ ℤ)) |
9 | 6, 8 | mpbid 146 | . . 3 ⊢ ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → 𝑁 ∈ ℤ) |
10 | 9 | rexlimiva 2569 | . 2 ⊢ (∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁 → 𝑁 ∈ ℤ) |
11 | divides 11667 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁)) | |
12 | zcn 9155 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
13 | 2cnd 8889 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℂ) | |
14 | 12, 13 | mulcomd 7882 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛)) |
15 | 14 | eqeq1d 2166 | . . . . 5 ⊢ (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝑁 ↔ (2 · 𝑛) = 𝑁)) |
16 | 15 | rexbiia 2472 | . . . 4 ⊢ (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
17 | 11, 16 | bitrdi 195 | . . 3 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
18 | 2, 17 | mpan 421 | . 2 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
19 | 1, 10, 18 | pm5.21nii 694 | 1 ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ∃wrex 2436 class class class wbr 3965 (class class class)co 5818 · cmul 7720 2c2 8867 ℤcz 9150 ∥ cdvds 11665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-inn 8817 df-2 8875 df-n0 9074 df-z 9151 df-dvds 11666 |
This theorem is referenced by: evennn02n 11754 evennn2n 11755 m1expe 11771 |
Copyright terms: Public domain | W3C validator |