| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djur | GIF version | ||
| Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.) |
| Ref | Expression |
|---|---|
| djur | ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldju 7152 | . 2 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) | |
| 2 | fvres 5594 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝑥) = (inl‘𝑥)) | |
| 3 | 2 | eqeq2d 2216 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ 𝐶 = (inl‘𝑥))) |
| 4 | 3 | rexbiia 2520 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥)) |
| 5 | fvres 5594 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝑥) = (inr‘𝑥)) | |
| 6 | 5 | eqeq2d 2216 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ 𝐶 = (inr‘𝑥))) |
| 7 | 6 | rexbiia 2520 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥)) |
| 8 | 4, 7 | orbi12i 765 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
| 9 | 1, 8 | bitri 184 | 1 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ∃wrex 2484 ↾ cres 4675 ‘cfv 5268 ⊔ cdju 7121 inlcinl 7129 inrcinr 7130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-suc 4416 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-1st 6216 df-2nd 6217 df-1o 6492 df-dju 7122 df-inl 7131 df-inr 7132 |
| This theorem is referenced by: djuss 7154 updjud 7166 omp1eomlem 7178 0ct 7191 ctmlemr 7192 ctssdclemn0 7194 fodjuomnilemdc 7228 exmidfodomrlemeldju 7289 |
| Copyright terms: Public domain | W3C validator |