Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djur | GIF version |
Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.) |
Ref | Expression |
---|---|
djur | ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldju 7012 | . 2 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) | |
2 | fvres 5492 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝑥) = (inl‘𝑥)) | |
3 | 2 | eqeq2d 2169 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ 𝐶 = (inl‘𝑥))) |
4 | 3 | rexbiia 2472 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥)) |
5 | fvres 5492 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝑥) = (inr‘𝑥)) | |
6 | 5 | eqeq2d 2169 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ 𝐶 = (inr‘𝑥))) |
7 | 6 | rexbiia 2472 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥)) |
8 | 4, 7 | orbi12i 754 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
9 | 1, 8 | bitri 183 | 1 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 698 = wceq 1335 ∈ wcel 2128 ∃wrex 2436 ↾ cres 4588 ‘cfv 5170 ⊔ cdju 6981 inlcinl 6989 inrcinr 6990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-1st 6088 df-2nd 6089 df-1o 6363 df-dju 6982 df-inl 6991 df-inr 6992 |
This theorem is referenced by: djuss 7014 updjud 7026 omp1eomlem 7038 0ct 7051 ctmlemr 7052 ctssdclemn0 7054 fodjuomnilemdc 7087 exmidfodomrlemeldju 7134 |
Copyright terms: Public domain | W3C validator |