| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djur | GIF version | ||
| Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.) |
| Ref | Expression |
|---|---|
| djur | ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldju 7231 | . 2 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) | |
| 2 | fvres 5650 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝑥) = (inl‘𝑥)) | |
| 3 | 2 | eqeq2d 2241 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ 𝐶 = (inl‘𝑥))) |
| 4 | 3 | rexbiia 2545 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥)) |
| 5 | fvres 5650 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝑥) = (inr‘𝑥)) | |
| 6 | 5 | eqeq2d 2241 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ 𝐶 = (inr‘𝑥))) |
| 7 | 6 | rexbiia 2545 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥)) |
| 8 | 4, 7 | orbi12i 769 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
| 9 | 1, 8 | bitri 184 | 1 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 ↾ cres 4720 ‘cfv 5317 ⊔ cdju 7200 inlcinl 7208 inrcinr 7209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1st 6284 df-2nd 6285 df-1o 6560 df-dju 7201 df-inl 7210 df-inr 7211 |
| This theorem is referenced by: djuss 7233 updjud 7245 omp1eomlem 7257 0ct 7270 ctmlemr 7271 ctssdclemn0 7273 fodjuomnilemdc 7307 exmidfodomrlemeldju 7373 |
| Copyright terms: Public domain | W3C validator |