| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djur | GIF version | ||
| Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.) |
| Ref | Expression |
|---|---|
| djur | ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldju 7191 | . 2 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) | |
| 2 | fvres 5618 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝑥) = (inl‘𝑥)) | |
| 3 | 2 | eqeq2d 2218 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ 𝐶 = (inl‘𝑥))) |
| 4 | 3 | rexbiia 2522 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥)) |
| 5 | fvres 5618 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝑥) = (inr‘𝑥)) | |
| 6 | 5 | eqeq2d 2218 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ 𝐶 = (inr‘𝑥))) |
| 7 | 6 | rexbiia 2522 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥)) |
| 8 | 4, 7 | orbi12i 766 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
| 9 | 1, 8 | bitri 184 | 1 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 ↾ cres 4690 ‘cfv 5285 ⊔ cdju 7160 inlcinl 7168 inrcinr 7169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-1st 6244 df-2nd 6245 df-1o 6520 df-dju 7161 df-inl 7170 df-inr 7171 |
| This theorem is referenced by: djuss 7193 updjud 7205 omp1eomlem 7217 0ct 7230 ctmlemr 7231 ctssdclemn0 7233 fodjuomnilemdc 7267 exmidfodomrlemeldju 7333 |
| Copyright terms: Public domain | W3C validator |