![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djur | GIF version |
Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.) |
Ref | Expression |
---|---|
djur | ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldju 7127 | . 2 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥))) | |
2 | fvres 5578 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝑥) = (inl‘𝑥)) | |
3 | 2 | eqeq2d 2205 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ 𝐶 = (inl‘𝑥))) |
4 | 3 | rexbiia 2509 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥)) |
5 | fvres 5578 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝑥) = (inr‘𝑥)) | |
6 | 5 | eqeq2d 2205 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ 𝐶 = (inr‘𝑥))) |
7 | 6 | rexbiia 2509 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥)) |
8 | 4, 7 | orbi12i 765 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
9 | 1, 8 | bitri 184 | 1 ⊢ (𝐶 ∈ (𝐴 ⊔ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥 ∈ 𝐵 𝐶 = (inr‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 ↾ cres 4661 ‘cfv 5254 ⊔ cdju 7096 inlcinl 7104 inrcinr 7105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1st 6193 df-2nd 6194 df-1o 6469 df-dju 7097 df-inl 7106 df-inr 7107 |
This theorem is referenced by: djuss 7129 updjud 7141 omp1eomlem 7153 0ct 7166 ctmlemr 7167 ctssdclemn0 7169 fodjuomnilemdc 7203 exmidfodomrlemeldju 7259 |
Copyright terms: Public domain | W3C validator |