ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djur GIF version

Theorem djur 7232
Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.)
Assertion
Ref Expression
djur (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥𝐵 𝐶 = (inr‘𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem djur
StepHypRef Expression
1 eldju 7231 . 2 (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
2 fvres 5650 . . . . 5 (𝑥𝐴 → ((inl ↾ 𝐴)‘𝑥) = (inl‘𝑥))
32eqeq2d 2241 . . . 4 (𝑥𝐴 → (𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ 𝐶 = (inl‘𝑥)))
43rexbiia 2545 . . 3 (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ ∃𝑥𝐴 𝐶 = (inl‘𝑥))
5 fvres 5650 . . . . 5 (𝑥𝐵 → ((inr ↾ 𝐵)‘𝑥) = (inr‘𝑥))
65eqeq2d 2241 . . . 4 (𝑥𝐵 → (𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ 𝐶 = (inr‘𝑥)))
76rexbiia 2545 . . 3 (∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ ∃𝑥𝐵 𝐶 = (inr‘𝑥))
84, 7orbi12i 769 . 2 ((∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) ↔ (∃𝑥𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥𝐵 𝐶 = (inr‘𝑥)))
91, 8bitri 184 1 (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥𝐵 𝐶 = (inr‘𝑥)))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 713   = wceq 1395  wcel 2200  wrex 2509  cres 4720  cfv 5317  cdju 7200  inlcinl 7208  inrcinr 7209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-dju 7201  df-inl 7210  df-inr 7211
This theorem is referenced by:  djuss  7233  updjud  7245  omp1eomlem  7257  0ct  7270  ctmlemr  7271  ctssdclemn0  7273  fodjuomnilemdc  7307  exmidfodomrlemeldju  7373
  Copyright terms: Public domain W3C validator