ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djur GIF version

Theorem djur 7153
Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.) Upgrade implication to biconditional and shorten proof. (Revised by BJ, 14-Jul-2023.)
Assertion
Ref Expression
djur (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥𝐵 𝐶 = (inr‘𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem djur
StepHypRef Expression
1 eldju 7152 . 2 (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)))
2 fvres 5594 . . . . 5 (𝑥𝐴 → ((inl ↾ 𝐴)‘𝑥) = (inl‘𝑥))
32eqeq2d 2216 . . . 4 (𝑥𝐴 → (𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ 𝐶 = (inl‘𝑥)))
43rexbiia 2520 . . 3 (∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ↔ ∃𝑥𝐴 𝐶 = (inl‘𝑥))
5 fvres 5594 . . . . 5 (𝑥𝐵 → ((inr ↾ 𝐵)‘𝑥) = (inr‘𝑥))
65eqeq2d 2216 . . . 4 (𝑥𝐵 → (𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ 𝐶 = (inr‘𝑥)))
76rexbiia 2520 . . 3 (∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥) ↔ ∃𝑥𝐵 𝐶 = (inr‘𝑥))
84, 7orbi12i 765 . 2 ((∃𝑥𝐴 𝐶 = ((inl ↾ 𝐴)‘𝑥) ∨ ∃𝑥𝐵 𝐶 = ((inr ↾ 𝐵)‘𝑥)) ↔ (∃𝑥𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥𝐵 𝐶 = (inr‘𝑥)))
91, 8bitri 184 1 (𝐶 ∈ (𝐴𝐵) ↔ (∃𝑥𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥𝐵 𝐶 = (inr‘𝑥)))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709   = wceq 1372  wcel 2175  wrex 2484  cres 4675  cfv 5268  cdju 7121  inlcinl 7129  inrcinr 7130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-1st 6216  df-2nd 6217  df-1o 6492  df-dju 7122  df-inl 7131  df-inr 7132
This theorem is referenced by:  djuss  7154  updjud  7166  omp1eomlem  7178  0ct  7191  ctmlemr  7192  ctssdclemn0  7194  fodjuomnilemdc  7228  exmidfodomrlemeldju  7289
  Copyright terms: Public domain W3C validator