![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexeq | GIF version |
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2228 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2228 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | rexeqf 2559 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1289 ∃wrex 2360 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rex 2365 |
This theorem is referenced by: rexeqi 2567 rexeqdv 2569 rexeqbi1dv 2571 unieq 3662 bnd2 4008 exss 4054 qseq1 6340 finexdc 6618 supeq1 6681 isomni 6792 bj-nn0sucALT 11873 strcoll2 11878 sscoll2 11883 |
Copyright terms: Public domain | W3C validator |