![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexeq | GIF version |
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | rexeqf 2687 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 |
This theorem is referenced by: rexeqi 2695 rexeqdv 2697 rexeqbi1dv 2703 unieq 3844 bnd2 4202 exss 4256 qseq1 6637 finexdc 6958 supeq1 7045 isomni 7195 ismkv 7212 sup3exmid 8976 exmidunben 12583 neifval 14308 cnprcl2k 14374 bj-nn0sucALT 15470 strcoll2 15475 strcollnft 15476 strcollnfALT 15478 sscoll2 15480 |
Copyright terms: Public domain | W3C validator |