| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeq | GIF version | ||
| Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | rexeqf 2725 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 |
| This theorem is referenced by: rexeqi 2733 rexeqdv 2735 rexeqbi1dv 2741 unieq 3897 bnd2 4257 exss 4313 qseq1 6738 finexdc 7072 supeq1 7161 isomni 7311 ismkv 7328 sup3exmid 9112 exmidunben 13005 neifval 14822 cnprcl2k 14888 bj-nn0sucALT 16365 strcoll2 16370 strcollnft 16371 strcollnfALT 16373 sscoll2 16375 |
| Copyright terms: Public domain | W3C validator |