| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeq | GIF version | ||
| Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| rexeq | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | rexeqf 2700 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 |
| This theorem is referenced by: rexeqi 2708 rexeqdv 2710 rexeqbi1dv 2716 unieq 3864 bnd2 4224 exss 4278 qseq1 6682 finexdc 7013 supeq1 7102 isomni 7252 ismkv 7269 sup3exmid 9045 exmidunben 12867 neifval 14682 cnprcl2k 14748 bj-nn0sucALT 16048 strcoll2 16053 strcollnft 16054 strcollnfALT 16056 sscoll2 16058 |
| Copyright terms: Public domain | W3C validator |