ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeq GIF version

Theorem rexeq 2729
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.)
Assertion
Ref Expression
rexeq (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexeq
StepHypRef Expression
1 nfcv 2372 . 2 𝑥𝐴
2 nfcv 2372 . 2 𝑥𝐵
31, 2rexeqf 2725 1 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514
This theorem is referenced by:  rexeqi  2733  rexeqdv  2735  rexeqbi1dv  2741  unieq  3896  bnd2  4256  exss  4312  qseq1  6720  finexdc  7052  supeq1  7141  isomni  7291  ismkv  7308  sup3exmid  9092  exmidunben  12983  neifval  14799  cnprcl2k  14865  bj-nn0sucALT  16271  strcoll2  16276  strcollnft  16277  strcollnfALT  16279  sscoll2  16281
  Copyright terms: Public domain W3C validator