ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeq GIF version

Theorem rexeq 2691
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.)
Assertion
Ref Expression
rexeq (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexeq
StepHypRef Expression
1 nfcv 2336 . 2 𝑥𝐴
2 nfcv 2336 . 2 𝑥𝐵
31, 2rexeqf 2687 1 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478
This theorem is referenced by:  rexeqi  2695  rexeqdv  2697  rexeqbi1dv  2703  unieq  3844  bnd2  4202  exss  4256  qseq1  6637  finexdc  6958  supeq1  7045  isomni  7195  ismkv  7212  sup3exmid  8976  exmidunben  12583  neifval  14308  cnprcl2k  14374  bj-nn0sucALT  15470  strcoll2  15475  strcollnft  15476  strcollnfALT  15478  sscoll2  15480
  Copyright terms: Public domain W3C validator