ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexxfr GIF version

Theorem rexxfr 4446
Description: Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
ralxfr.1 (𝑦𝐶𝐴𝐵)
ralxfr.2 (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)
ralxfr.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexxfr (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐶 𝜓)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem rexxfr
StepHypRef Expression
1 ralxfr.1 . . . 4 (𝑦𝐶𝐴𝐵)
21adantl 275 . . 3 ((⊤ ∧ 𝑦𝐶) → 𝐴𝐵)
3 ralxfr.2 . . . 4 (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)
43adantl 275 . . 3 ((⊤ ∧ 𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
5 ralxfr.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
65adantl 275 . . 3 ((⊤ ∧ 𝑥 = 𝐴) → (𝜑𝜓))
72, 4, 6rexxfrd 4441 . 2 (⊤ → (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐶 𝜓))
87mptru 1352 1 (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐶 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wtru 1344  wcel 2136  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator