ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexxfr GIF version

Theorem rexxfr 4559
Description: Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
ralxfr.1 (𝑦𝐶𝐴𝐵)
ralxfr.2 (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)
ralxfr.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexxfr (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐶 𝜓)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem rexxfr
StepHypRef Expression
1 ralxfr.1 . . . 4 (𝑦𝐶𝐴𝐵)
21adantl 277 . . 3 ((⊤ ∧ 𝑦𝐶) → 𝐴𝐵)
3 ralxfr.2 . . . 4 (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)
43adantl 277 . . 3 ((⊤ ∧ 𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
5 ralxfr.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
65adantl 277 . . 3 ((⊤ ∧ 𝑥 = 𝐴) → (𝜑𝜓))
72, 4, 6rexxfrd 4554 . 2 (⊤ → (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐶 𝜓))
87mptru 1404 1 (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐶 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wtru 1396  wcel 2200  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator