Proof of Theorem rabxfrd
Step | Hyp | Ref
| Expression |
1 | | rabxfrd.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐴 ∈ 𝐷) |
2 | 1 | ex 114 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷)) |
3 | | ibibr 245 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷) ↔ (𝑦 ∈ 𝐷 → (𝐴 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷))) |
4 | 2, 3 | sylib 121 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐷 → (𝐴 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷))) |
5 | 4 | imp 123 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐴 ∈ 𝐷 ↔ 𝑦 ∈ 𝐷)) |
6 | 5 | anbi1d 461 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐴 ∈ 𝐷 ∧ 𝜒) ↔ (𝑦 ∈ 𝐷 ∧ 𝜒))) |
7 | | rabxfrd.4 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
8 | 7 | elrab 2882 |
. . . . . . 7
⊢ (𝐴 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓} ↔ (𝐴 ∈ 𝐷 ∧ 𝜒)) |
9 | | rabid 2641 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒} ↔ (𝑦 ∈ 𝐷 ∧ 𝜒)) |
10 | 6, 8, 9 | 3bitr4g 222 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐴 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓} ↔ 𝑦 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒})) |
11 | 10 | rabbidva 2714 |
. . . . 5
⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ 𝐴 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓}} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒}}) |
12 | 11 | eleq2d 2236 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝐴 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓}} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒}})) |
13 | | rabxfrd.1 |
. . . . 5
⊢
Ⅎ𝑦𝐵 |
14 | | nfcv 2308 |
. . . . 5
⊢
Ⅎ𝑦𝐷 |
15 | | rabxfrd.2 |
. . . . . 6
⊢
Ⅎ𝑦𝐶 |
16 | 15 | nfel1 2319 |
. . . . 5
⊢
Ⅎ𝑦 𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓} |
17 | | rabxfrd.5 |
. . . . . 6
⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) |
18 | 17 | eleq1d 2235 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓} ↔ 𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓})) |
19 | 13, 14, 16, 18 | elrabf 2880 |
. . . 4
⊢ (𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝐴 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓}} ↔ (𝐵 ∈ 𝐷 ∧ 𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓})) |
20 | | nfrab1 2645 |
. . . . . 6
⊢
Ⅎ𝑦{𝑦 ∈ 𝐷 ∣ 𝜒} |
21 | 13, 20 | nfel 2317 |
. . . . 5
⊢
Ⅎ𝑦 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒} |
22 | | eleq1 2229 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝑦 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒})) |
23 | 13, 14, 21, 22 | elrabf 2880 |
. . . 4
⊢ (𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒}} ↔ (𝐵 ∈ 𝐷 ∧ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒})) |
24 | 12, 19, 23 | 3bitr3g 221 |
. . 3
⊢ (𝜑 → ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓}) ↔ (𝐵 ∈ 𝐷 ∧ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒}))) |
25 | | pm5.32 449 |
. . 3
⊢ ((𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒})) ↔ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓}) ↔ (𝐵 ∈ 𝐷 ∧ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒}))) |
26 | 24, 25 | sylibr 133 |
. 2
⊢ (𝜑 → (𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒}))) |
27 | 26 | imp 123 |
1
⊢ ((𝜑 ∧ 𝐵 ∈ 𝐷) → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒})) |