| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elrnmptdv | GIF version | ||
| Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| elrnmptdv.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| elrnmptdv.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) | 
| elrnmptdv.3 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) | 
| elrnmptdv.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) | 
| Ref | Expression | 
|---|---|
| elrnmptdv | ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elrnmptdv.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) | |
| 2 | elrnmptdv.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | 1, 2 | rspcime 2875 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐷 = 𝐵) | 
| 4 | elrnmptdv.3 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 5 | elrnmptdv.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | elrnmpt 4915 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐷 = 𝐵)) | 
| 7 | 4, 6 | syl 14 | . 2 ⊢ (𝜑 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐷 = 𝐵)) | 
| 8 | 3, 7 | mpbird 167 | 1 ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ↦ cmpt 4094 ran crn 4664 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-mpt 4096 df-cnv 4671 df-dm 4673 df-rn 4674 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |