| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrnmptdv | GIF version | ||
| Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| elrnmptdv.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmptdv.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| elrnmptdv.3 | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| elrnmptdv.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| elrnmptdv | ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmptdv.4 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) | |
| 2 | elrnmptdv.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 3 | 1, 2 | rspcime 2891 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐷 = 𝐵) |
| 4 | elrnmptdv.3 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 5 | elrnmptdv.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | elrnmpt 4946 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐷 = 𝐵)) |
| 7 | 4, 6 | syl 14 | . 2 ⊢ (𝜑 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐷 = 𝐵)) |
| 8 | 3, 7 | mpbird 167 | 1 ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∃wrex 2487 ↦ cmpt 4121 ran crn 4694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-mpt 4123 df-cnv 4701 df-dm 4703 df-rn 4704 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |