ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmptdv GIF version

Theorem elrnmptdv 4978
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmptdv.1 𝐹 = (𝑥𝐴𝐵)
elrnmptdv.2 (𝜑𝐶𝐴)
elrnmptdv.3 (𝜑𝐷𝑉)
elrnmptdv.4 ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)
Assertion
Ref Expression
elrnmptdv (𝜑𝐷 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptdv
StepHypRef Expression
1 elrnmptdv.4 . . 3 ((𝜑𝑥 = 𝐶) → 𝐷 = 𝐵)
2 elrnmptdv.2 . . 3 (𝜑𝐶𝐴)
31, 2rspcime 2914 . 2 (𝜑 → ∃𝑥𝐴 𝐷 = 𝐵)
4 elrnmptdv.3 . . 3 (𝜑𝐷𝑉)
5 elrnmptdv.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
65elrnmpt 4973 . . 3 (𝐷𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐷 = 𝐵))
74, 6syl 14 . 2 (𝜑 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐷 = 𝐵))
83, 7mpbird 167 1 (𝜑𝐷 ∈ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  cmpt 4145  ran crn 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-mpt 4147  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator