![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfsbcq2 | GIF version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1763 and substitution for class variables df-sbc 2964. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 2965. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2240 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-clab 2164 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | df-sbc 2964 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | bicomi 132 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
5 | 1, 2, 4 | 3bitr3g 222 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 [wsb 1762 ∈ wcel 2148 {cab 2163 [wsbc 2963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-clab 2164 df-cleq 2170 df-clel 2173 df-sbc 2964 |
This theorem is referenced by: sbsbc 2967 sbc8g 2971 sbceq1a 2973 sbc5 2987 sbcng 3004 sbcimg 3005 sbcan 3006 sbcang 3007 sbcor 3008 sbcorg 3009 sbcbig 3010 sbcal 3015 sbcalg 3016 sbcex2 3017 sbcexg 3018 sbcel1v 3026 sbctt 3030 sbcralt 3040 sbcrext 3041 sbcralg 3042 sbcreug 3044 rspsbc 3046 rspesbca 3048 sbcel12g 3073 sbceqg 3074 sbcbrg 4058 csbopabg 4082 opelopabsb 4261 findes 4603 iota4 5197 csbiotag 5210 csbriotag 5843 nn0ind-raph 9370 uzind4s 9590 bezoutlemmain 11999 bezoutlemex 12002 |
Copyright terms: Public domain | W3C validator |