| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfsbcq2 | GIF version | ||
| Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1787 and substitution for class variables df-sbc 3000. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3001. (Contributed by NM, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2269 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-clab 2193 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | df-sbc 3000 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 3 | bicomi 132 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
| 5 | 1, 2, 4 | 3bitr3g 222 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 [wsb 1786 ∈ wcel 2177 {cab 2192 [wsbc 2999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-clab 2193 df-cleq 2199 df-clel 2202 df-sbc 3000 |
| This theorem is referenced by: sbsbc 3003 sbc8g 3007 sbceq1a 3009 sbc5 3023 sbcng 3040 sbcimg 3041 sbcan 3042 sbcang 3043 sbcor 3044 sbcorg 3045 sbcbig 3046 sbcal 3051 sbcalg 3052 sbcex2 3053 sbcexg 3054 sbcel1v 3062 sbctt 3066 sbcralt 3076 sbcrext 3077 sbcralg 3078 sbcreug 3080 rspsbc 3082 rspesbca 3084 sbcel12g 3109 sbceqg 3110 sbcbrg 4102 csbopabg 4126 opelopabsb 4310 findes 4655 iota4 5256 csbiotag 5269 csbriotag 5919 nn0ind-raph 9497 uzind4s 9718 bezoutlemmain 12363 bezoutlemex 12366 |
| Copyright terms: Public domain | W3C validator |