| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfsbcq2 | GIF version | ||
| Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1809 and substitution for class variables df-sbc 3029. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3030. (Contributed by NM, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-clab 2216 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | df-sbc 3029 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 3 | bicomi 132 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
| 5 | 1, 2, 4 | 3bitr3g 222 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 [wsb 1808 ∈ wcel 2200 {cab 2215 [wsbc 3028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-clab 2216 df-cleq 2222 df-clel 2225 df-sbc 3029 |
| This theorem is referenced by: sbsbc 3032 sbc8g 3036 sbceq1a 3038 sbc5 3052 sbcng 3069 sbcimg 3070 sbcan 3071 sbcang 3072 sbcor 3073 sbcorg 3074 sbcbig 3075 sbcal 3080 sbcalg 3081 sbcex2 3082 sbcexg 3083 sbcel1v 3091 sbctt 3095 sbcralt 3105 sbcrext 3106 sbcralg 3107 sbcreug 3109 rspsbc 3112 rspesbca 3114 sbcel12g 3139 sbceqg 3140 sbcbrg 4138 csbopabg 4162 opelopabsb 4348 findes 4695 iota4 5298 csbiotag 5311 csbriotag 5974 nn0ind-raph 9572 uzind4s 9793 bezoutlemmain 12527 bezoutlemex 12530 |
| Copyright terms: Public domain | W3C validator |