| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfsbcq2 | GIF version | ||
| Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1789 and substitution for class variables df-sbc 3009. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3010. (Contributed by NM, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2272 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-clab 2196 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | df-sbc 3009 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 3 | bicomi 132 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
| 5 | 1, 2, 4 | 3bitr3g 222 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 [wsb 1788 ∈ wcel 2180 {cab 2195 [wsbc 3008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-17 1552 ax-ial 1560 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-clab 2196 df-cleq 2202 df-clel 2205 df-sbc 3009 |
| This theorem is referenced by: sbsbc 3012 sbc8g 3016 sbceq1a 3018 sbc5 3032 sbcng 3049 sbcimg 3050 sbcan 3051 sbcang 3052 sbcor 3053 sbcorg 3054 sbcbig 3055 sbcal 3060 sbcalg 3061 sbcex2 3062 sbcexg 3063 sbcel1v 3071 sbctt 3075 sbcralt 3085 sbcrext 3086 sbcralg 3087 sbcreug 3089 rspsbc 3092 rspesbca 3094 sbcel12g 3119 sbceqg 3120 sbcbrg 4117 csbopabg 4141 opelopabsb 4327 findes 4672 iota4 5274 csbiotag 5287 csbriotag 5941 nn0ind-raph 9532 uzind4s 9753 bezoutlemmain 12485 bezoutlemex 12488 |
| Copyright terms: Public domain | W3C validator |