Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfsbcq2 | GIF version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1756 and substitution for class variables df-sbc 2956. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 2957. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2233 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-clab 2157 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | df-sbc 2956 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | bicomi 131 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
5 | 1, 2, 4 | 3bitr3g 221 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 [wsb 1755 ∈ wcel 2141 {cab 2156 [wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-clab 2157 df-cleq 2163 df-clel 2166 df-sbc 2956 |
This theorem is referenced by: sbsbc 2959 sbc8g 2962 sbceq1a 2964 sbc5 2978 sbcng 2995 sbcimg 2996 sbcan 2997 sbcang 2998 sbcor 2999 sbcorg 3000 sbcbig 3001 sbcal 3006 sbcalg 3007 sbcex2 3008 sbcexg 3009 sbcel1v 3017 sbctt 3021 sbcralt 3031 sbcrext 3032 sbcralg 3033 sbcreug 3035 rspsbc 3037 rspesbca 3039 sbcel12g 3064 sbceqg 3065 sbcbrg 4043 csbopabg 4067 opelopabsb 4245 findes 4587 iota4 5178 csbiotag 5191 csbriotag 5821 nn0ind-raph 9329 uzind4s 9549 bezoutlemmain 11953 bezoutlemex 11956 |
Copyright terms: Public domain | W3C validator |