![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfsbcq2 | GIF version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1774 and substitution for class variables df-sbc 2986. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 2987. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2256 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-clab 2180 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | df-sbc 2986 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | bicomi 132 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
5 | 1, 2, 4 | 3bitr3g 222 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 [wsb 1773 ∈ wcel 2164 {cab 2179 [wsbc 2985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-clab 2180 df-cleq 2186 df-clel 2189 df-sbc 2986 |
This theorem is referenced by: sbsbc 2989 sbc8g 2993 sbceq1a 2995 sbc5 3009 sbcng 3026 sbcimg 3027 sbcan 3028 sbcang 3029 sbcor 3030 sbcorg 3031 sbcbig 3032 sbcal 3037 sbcalg 3038 sbcex2 3039 sbcexg 3040 sbcel1v 3048 sbctt 3052 sbcralt 3062 sbcrext 3063 sbcralg 3064 sbcreug 3066 rspsbc 3068 rspesbca 3070 sbcel12g 3095 sbceqg 3096 sbcbrg 4083 csbopabg 4107 opelopabsb 4290 findes 4635 iota4 5234 csbiotag 5247 csbriotag 5886 nn0ind-raph 9434 uzind4s 9655 bezoutlemmain 12135 bezoutlemex 12138 |
Copyright terms: Public domain | W3C validator |