| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfsbcq2 | GIF version | ||
| Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1777 and substitution for class variables df-sbc 2990. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 2991. (Contributed by NM, 31-Dec-2016.) |
| Ref | Expression |
|---|---|
| dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | df-clab 2183 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | df-sbc 2990 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 3 | bicomi 132 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
| 5 | 1, 2, 4 | 3bitr3g 222 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 [wsb 1776 ∈ wcel 2167 {cab 2182 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 |
| This theorem is referenced by: sbsbc 2993 sbc8g 2997 sbceq1a 2999 sbc5 3013 sbcng 3030 sbcimg 3031 sbcan 3032 sbcang 3033 sbcor 3034 sbcorg 3035 sbcbig 3036 sbcal 3041 sbcalg 3042 sbcex2 3043 sbcexg 3044 sbcel1v 3052 sbctt 3056 sbcralt 3066 sbcrext 3067 sbcralg 3068 sbcreug 3070 rspsbc 3072 rspesbca 3074 sbcel12g 3099 sbceqg 3100 sbcbrg 4087 csbopabg 4111 opelopabsb 4294 findes 4639 iota4 5238 csbiotag 5251 csbriotag 5890 nn0ind-raph 9443 uzind4s 9664 bezoutlemmain 12165 bezoutlemex 12168 |
| Copyright terms: Public domain | W3C validator |