![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfsbcq2 | GIF version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1761 and substitution for class variables df-sbc 2961. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 2962. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2238 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-clab 2162 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | df-sbc 2961 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | bicomi 132 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
5 | 1, 2, 4 | 3bitr3g 222 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 [wsb 1760 ∈ wcel 2146 {cab 2161 [wsbc 2960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-clab 2162 df-cleq 2168 df-clel 2171 df-sbc 2961 |
This theorem is referenced by: sbsbc 2964 sbc8g 2968 sbceq1a 2970 sbc5 2984 sbcng 3001 sbcimg 3002 sbcan 3003 sbcang 3004 sbcor 3005 sbcorg 3006 sbcbig 3007 sbcal 3012 sbcalg 3013 sbcex2 3014 sbcexg 3015 sbcel1v 3023 sbctt 3027 sbcralt 3037 sbcrext 3038 sbcralg 3039 sbcreug 3041 rspsbc 3043 rspesbca 3045 sbcel12g 3070 sbceqg 3071 sbcbrg 4052 csbopabg 4076 opelopabsb 4254 findes 4596 iota4 5188 csbiotag 5201 csbriotag 5833 nn0ind-raph 9341 uzind4s 9561 bezoutlemmain 11964 bezoutlemex 11967 |
Copyright terms: Public domain | W3C validator |