Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfsbcq2 | GIF version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1751 and substitution for class variables df-sbc 2952. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 2953. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 | ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-clab 2152 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | df-sbc 2952 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
4 | 3 | bicomi 131 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
5 | 1, 2, 4 | 3bitr3g 221 | 1 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 [wsb 1750 ∈ wcel 2136 {cab 2151 [wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-clab 2152 df-cleq 2158 df-clel 2161 df-sbc 2952 |
This theorem is referenced by: sbsbc 2955 sbc8g 2958 sbceq1a 2960 sbc5 2974 sbcng 2991 sbcimg 2992 sbcan 2993 sbcang 2994 sbcor 2995 sbcorg 2996 sbcbig 2997 sbcal 3002 sbcalg 3003 sbcex2 3004 sbcexg 3005 sbcel1v 3013 sbctt 3017 sbcralt 3027 sbcrext 3028 sbcralg 3029 sbcreug 3031 rspsbc 3033 rspesbca 3035 sbcel12g 3060 sbceqg 3061 sbcbrg 4036 csbopabg 4060 opelopabsb 4238 findes 4580 iota4 5171 csbiotag 5181 csbriotag 5810 nn0ind-raph 9308 uzind4s 9528 bezoutlemmain 11931 bezoutlemex 11934 |
Copyright terms: Public domain | W3C validator |