Step | Hyp | Ref
| Expression |
1 | | elex 2746 |
. 2
⊢ (𝑅 ∈ SRing → 𝑅 ∈ V) |
2 | | simp1 997 |
. . 3
⊢ ((𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) → 𝑅 ∈ CMnd) |
3 | 2 | elexd 2748 |
. 2
⊢ ((𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) → 𝑅 ∈ V) |
4 | | issrg.g |
. . . . . . . 8
⊢ 𝐺 = (mulGrp‘𝑅) |
5 | 4 | eleq1i 2241 |
. . . . . . 7
⊢ (𝐺 ∈ Mnd ↔
(mulGrp‘𝑅) ∈
Mnd) |
6 | 5 | bicomi 132 |
. . . . . 6
⊢
((mulGrp‘𝑅)
∈ Mnd ↔ 𝐺 ∈
Mnd) |
7 | 6 | a1i 9 |
. . . . 5
⊢ (𝑅 ∈ V →
((mulGrp‘𝑅) ∈
Mnd ↔ 𝐺 ∈
Mnd)) |
8 | | issrg.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
9 | | basfn 12485 |
. . . . . . . 8
⊢ Base Fn
V |
10 | | funfvex 5524 |
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
11 | 10 | funfni 5308 |
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
12 | 9, 11 | mpan 424 |
. . . . . . 7
⊢ (𝑅 ∈ V →
(Base‘𝑅) ∈
V) |
13 | 8, 12 | eqeltrid 2262 |
. . . . . 6
⊢ (𝑅 ∈ V → 𝐵 ∈ V) |
14 | | issrg.p |
. . . . . . . . 9
⊢ + =
(+g‘𝑅) |
15 | | plusgslid 12525 |
. . . . . . . . . 10
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
16 | 15 | slotex 12455 |
. . . . . . . . 9
⊢ (𝑅 ∈ V →
(+g‘𝑅)
∈ V) |
17 | 14, 16 | eqeltrid 2262 |
. . . . . . . 8
⊢ (𝑅 ∈ V → + ∈
V) |
18 | 17 | adantr 276 |
. . . . . . 7
⊢ ((𝑅 ∈ V ∧ 𝑏 = 𝐵) → + ∈ V) |
19 | | issrg.t |
. . . . . . . . . 10
⊢ · =
(.r‘𝑅) |
20 | | mulrslid 12542 |
. . . . . . . . . . 11
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
21 | 20 | slotex 12455 |
. . . . . . . . . 10
⊢ (𝑅 ∈ V →
(.r‘𝑅)
∈ V) |
22 | 19, 21 | eqeltrid 2262 |
. . . . . . . . 9
⊢ (𝑅 ∈ V → · ∈
V) |
23 | 22 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝑅 ∈ V ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) → · ∈
V) |
24 | | issrg.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑅) |
25 | | fn0g 12659 |
. . . . . . . . . . . 12
⊢
0g Fn V |
26 | | funfvex 5524 |
. . . . . . . . . . . . 13
⊢ ((Fun
0g ∧ 𝑅
∈ dom 0g) → (0g‘𝑅) ∈ V) |
27 | 26 | funfni 5308 |
. . . . . . . . . . . 12
⊢
((0g Fn V ∧ 𝑅 ∈ V) → (0g‘𝑅) ∈ V) |
28 | 25, 27 | mpan 424 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ V →
(0g‘𝑅)
∈ V) |
29 | 24, 28 | eqeltrid 2262 |
. . . . . . . . . 10
⊢ (𝑅 ∈ V → 0 ∈
V) |
30 | 29 | ad3antrrr 492 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ V ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 0 ∈
V) |
31 | | simp-4r 542 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑏 = 𝐵) |
32 | | simplr 528 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑡 = · ) |
33 | | eqidd 2176 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑥 = 𝑥) |
34 | | simpllr 534 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑝 = + ) |
35 | 34 | oveqd 5882 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑦𝑝𝑧) = (𝑦 + 𝑧)) |
36 | 32, 33, 35 | oveq123d 5886 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡(𝑦𝑝𝑧)) = (𝑥 · (𝑦 + 𝑧))) |
37 | 32 | oveqd 5882 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑦) = (𝑥 · 𝑦)) |
38 | 32 | oveqd 5882 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑧) = (𝑥 · 𝑧)) |
39 | 34, 37, 38 | oveq123d 5886 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
40 | 36, 39 | eqeq12d 2190 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ↔ (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))) |
41 | 34 | oveqd 5882 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦)) |
42 | | eqidd 2176 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑧 = 𝑧) |
43 | 32, 41, 42 | oveq123d 5886 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥 + 𝑦) · 𝑧)) |
44 | 32 | oveqd 5882 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑦𝑡𝑧) = (𝑦 · 𝑧)) |
45 | 34, 38, 44 | oveq123d 5886 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
46 | 43, 45 | eqeq12d 2190 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) ↔ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))) |
47 | 40, 46 | anbi12d 473 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
48 | 31, 47 | raleqbidv 2682 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
49 | 31, 48 | raleqbidv 2682 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
50 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → 𝑛 = 0 ) |
51 | 32, 50, 33 | oveq123d 5886 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑛𝑡𝑥) = ( 0 · 𝑥)) |
52 | 51, 50 | eqeq12d 2190 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑛𝑡𝑥) = 𝑛 ↔ ( 0 · 𝑥) = 0 )) |
53 | 32, 33, 50 | oveq123d 5886 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (𝑥𝑡𝑛) = (𝑥 · 0 )) |
54 | 53, 50 | eqeq12d 2190 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((𝑥𝑡𝑛) = 𝑛 ↔ (𝑥 · 0 ) = 0 )) |
55 | 52, 54 | anbi12d 473 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛) ↔ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) |
56 | 49, 55 | anbi12d 473 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → ((∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
57 | 31, 56 | raleqbidv 2682 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ V
∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) ∧ 𝑛 = 0 ) → (∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
58 | 30, 57 | sbcied 2997 |
. . . . . . . 8
⊢ ((((𝑅 ∈ V ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ([
0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
59 | 23, 58 | sbcied 2997 |
. . . . . . 7
⊢ (((𝑅 ∈ V ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) → ([ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
60 | 18, 59 | sbcied 2997 |
. . . . . 6
⊢ ((𝑅 ∈ V ∧ 𝑏 = 𝐵) → ([ + / 𝑝][ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
61 | 13, 60 | sbcied 2997 |
. . . . 5
⊢ (𝑅 ∈ V → ([𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |
62 | 7, 61 | anbi12d 473 |
. . . 4
⊢ (𝑅 ∈ V →
(((mulGrp‘𝑅) ∈
Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))) |
63 | 62 | anbi2d 464 |
. . 3
⊢ (𝑅 ∈ V → ((𝑅 ∈ CMnd ∧
((mulGrp‘𝑅) ∈
Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) ↔ (𝑅 ∈ CMnd ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))))) |
64 | | fveq2 5507 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) |
65 | 64 | eleq1d 2244 |
. . . . 5
⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ Mnd ↔ (mulGrp‘𝑅) ∈ Mnd)) |
66 | | fveq2 5507 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
67 | 66, 8 | eqtr4di 2226 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
68 | | fveq2 5507 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = (+g‘𝑅)) |
69 | 68, 14 | eqtr4di 2226 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (+g‘𝑟) = + ) |
70 | | fveq2 5507 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) |
71 | 70, 19 | eqtr4di 2226 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
72 | | fveq2 5507 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
73 | 72, 24 | eqtr4di 2226 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
74 | 73 | sbceq1d 2965 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ([(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) |
75 | 71, 74 | sbceqbid 2967 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ([(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) |
76 | 69, 75 | sbceqbid 2967 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ([(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [ + / 𝑝][ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) |
77 | 67, 76 | sbceqbid 2967 |
. . . . 5
⊢ (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)) ↔ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))) |
78 | 65, 77 | anbi12d 473 |
. . . 4
⊢ (𝑟 = 𝑅 → (((mulGrp‘𝑟) ∈ Mnd ∧ [(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))) ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · / 𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))) |
79 | | df-srg 12940 |
. . . 4
⊢ SRing =
{𝑟 ∈ CMnd ∣
((mulGrp‘𝑟) ∈
Mnd ∧ [(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡][(0g‘𝑟) / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))} |
80 | 78, 79 | elrab2 2894 |
. . 3
⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧
((mulGrp‘𝑅) ∈
Mnd ∧ [𝐵 / 𝑏][ + / 𝑝][ · /
𝑡][ 0 / 𝑛]∀𝑥 ∈ 𝑏 (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛))))) |
81 | | 3anass 982 |
. . 3
⊢ ((𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))) ↔ (𝑅 ∈ CMnd ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))) |
82 | 63, 80, 81 | 3bitr4g 223 |
. 2
⊢ (𝑅 ∈ V → (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 ))))) |
83 | 1, 3, 82 | pm5.21nii 704 |
1
⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) |