Step | Hyp | Ref
| Expression |
1 | | elex 2750 |
. 2
β’ (π
β SRing β π
β V) |
2 | | simp1 997 |
. . 3
β’ ((π
β CMnd β§ πΊ β Mnd β§ βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 ))) β π
β CMnd) |
3 | 2 | elexd 2752 |
. 2
β’ ((π
β CMnd β§ πΊ β Mnd β§ βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 ))) β π
β V) |
4 | | issrg.g |
. . . . . . . 8
β’ πΊ = (mulGrpβπ
) |
5 | 4 | eleq1i 2243 |
. . . . . . 7
β’ (πΊ β Mnd β
(mulGrpβπ
) β
Mnd) |
6 | 5 | bicomi 132 |
. . . . . 6
β’
((mulGrpβπ
)
β Mnd β πΊ β
Mnd) |
7 | 6 | a1i 9 |
. . . . 5
β’ (π
β V β
((mulGrpβπ
) β
Mnd β πΊ β
Mnd)) |
8 | | issrg.b |
. . . . . . 7
β’ π΅ = (Baseβπ
) |
9 | | basfn 12522 |
. . . . . . . 8
β’ Base Fn
V |
10 | | funfvex 5534 |
. . . . . . . . 9
β’ ((Fun
Base β§ π
β dom
Base) β (Baseβπ
)
β V) |
11 | 10 | funfni 5318 |
. . . . . . . 8
β’ ((Base Fn
V β§ π
β V) β
(Baseβπ
) β
V) |
12 | 9, 11 | mpan 424 |
. . . . . . 7
β’ (π
β V β
(Baseβπ
) β
V) |
13 | 8, 12 | eqeltrid 2264 |
. . . . . 6
β’ (π
β V β π΅ β V) |
14 | | issrg.p |
. . . . . . . . 9
β’ + =
(+gβπ
) |
15 | | plusgslid 12573 |
. . . . . . . . . 10
β’
(+g = Slot (+gβndx) β§
(+gβndx) β β) |
16 | 15 | slotex 12491 |
. . . . . . . . 9
β’ (π
β V β
(+gβπ
)
β V) |
17 | 14, 16 | eqeltrid 2264 |
. . . . . . . 8
β’ (π
β V β + β
V) |
18 | 17 | adantr 276 |
. . . . . . 7
β’ ((π
β V β§ π = π΅) β + β V) |
19 | | issrg.t |
. . . . . . . . . 10
β’ Β· =
(.rβπ
) |
20 | | mulrslid 12592 |
. . . . . . . . . . 11
β’
(.r = Slot (.rβndx) β§
(.rβndx) β β) |
21 | 20 | slotex 12491 |
. . . . . . . . . 10
β’ (π
β V β
(.rβπ
)
β V) |
22 | 19, 21 | eqeltrid 2264 |
. . . . . . . . 9
β’ (π
β V β Β· β
V) |
23 | 22 | ad2antrr 488 |
. . . . . . . 8
β’ (((π
β V β§ π = π΅) β§ π = + ) β Β· β
V) |
24 | | issrg.0 |
. . . . . . . . . . 11
β’ 0 =
(0gβπ
) |
25 | | fn0g 12799 |
. . . . . . . . . . . 12
β’
0g Fn V |
26 | | funfvex 5534 |
. . . . . . . . . . . . 13
β’ ((Fun
0g β§ π
β dom 0g) β (0gβπ
) β V) |
27 | 26 | funfni 5318 |
. . . . . . . . . . . 12
β’
((0g Fn V β§ π
β V) β (0gβπ
) β V) |
28 | 25, 27 | mpan 424 |
. . . . . . . . . . 11
β’ (π
β V β
(0gβπ
)
β V) |
29 | 24, 28 | eqeltrid 2264 |
. . . . . . . . . 10
β’ (π
β V β 0 β
V) |
30 | 29 | ad3antrrr 492 |
. . . . . . . . 9
β’ ((((π
β V β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β 0 β
V) |
31 | | simp-4r 542 |
. . . . . . . . . 10
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β π = π΅) |
32 | | simplr 528 |
. . . . . . . . . . . . . . . 16
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β π‘ = Β· ) |
33 | | eqidd 2178 |
. . . . . . . . . . . . . . . 16
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β π₯ = π₯) |
34 | | simpllr 534 |
. . . . . . . . . . . . . . . . 17
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β π = + ) |
35 | 34 | oveqd 5894 |
. . . . . . . . . . . . . . . 16
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (π¦ππ§) = (π¦ + π§)) |
36 | 32, 33, 35 | oveq123d 5898 |
. . . . . . . . . . . . . . 15
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (π₯π‘(π¦ππ§)) = (π₯ Β· (π¦ + π§))) |
37 | 32 | oveqd 5894 |
. . . . . . . . . . . . . . . 16
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (π₯π‘π¦) = (π₯ Β· π¦)) |
38 | 32 | oveqd 5894 |
. . . . . . . . . . . . . . . 16
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (π₯π‘π§) = (π₯ Β· π§)) |
39 | 34, 37, 38 | oveq123d 5898 |
. . . . . . . . . . . . . . 15
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β ((π₯π‘π¦)π(π₯π‘π§)) = ((π₯ Β· π¦) + (π₯ Β· π§))) |
40 | 36, 39 | eqeq12d 2192 |
. . . . . . . . . . . . . 14
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β (π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)))) |
41 | 34 | oveqd 5894 |
. . . . . . . . . . . . . . . 16
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (π₯ππ¦) = (π₯ + π¦)) |
42 | | eqidd 2178 |
. . . . . . . . . . . . . . . 16
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β π§ = π§) |
43 | 32, 41, 42 | oveq123d 5898 |
. . . . . . . . . . . . . . 15
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β ((π₯ππ¦)π‘π§) = ((π₯ + π¦) Β· π§)) |
44 | 32 | oveqd 5894 |
. . . . . . . . . . . . . . . 16
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (π¦π‘π§) = (π¦ Β· π§)) |
45 | 34, 38, 44 | oveq123d 5898 |
. . . . . . . . . . . . . . 15
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β ((π₯π‘π§)π(π¦π‘π§)) = ((π₯ Β· π§) + (π¦ Β· π§))) |
46 | 43, 45 | eqeq12d 2192 |
. . . . . . . . . . . . . 14
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§)) β ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§)))) |
47 | 40, 46 | anbi12d 473 |
. . . . . . . . . . . . 13
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))))) |
48 | 31, 47 | raleqbidv 2685 |
. . . . . . . . . . . 12
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))))) |
49 | 31, 48 | raleqbidv 2685 |
. . . . . . . . . . 11
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))))) |
50 | | simpr 110 |
. . . . . . . . . . . . . 14
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β π = 0 ) |
51 | 32, 50, 33 | oveq123d 5898 |
. . . . . . . . . . . . 13
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (ππ‘π₯) = ( 0 Β· π₯)) |
52 | 51, 50 | eqeq12d 2192 |
. . . . . . . . . . . 12
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β ((ππ‘π₯) = π β ( 0 Β· π₯) = 0 )) |
53 | 32, 33, 50 | oveq123d 5898 |
. . . . . . . . . . . . 13
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (π₯π‘π) = (π₯ Β· 0 )) |
54 | 53, 50 | eqeq12d 2192 |
. . . . . . . . . . . 12
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β ((π₯π‘π) = π β (π₯ Β· 0 ) = 0 )) |
55 | 52, 54 | anbi12d 473 |
. . . . . . . . . . 11
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (((ππ‘π₯) = π β§ (π₯π‘π) = π) β (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 ))) |
56 | 49, 55 | anbi12d 473 |
. . . . . . . . . 10
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β ((βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)) β (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 )))) |
57 | 31, 56 | raleqbidv 2685 |
. . . . . . . . 9
β’
(((((π
β V
β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β§ π = 0 ) β (βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)) β βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 )))) |
58 | 30, 57 | sbcied 3001 |
. . . . . . . 8
β’ ((((π
β V β§ π = π΅) β§ π = + ) β§ π‘ = Β· ) β ([
0 / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)) β βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 )))) |
59 | 23, 58 | sbcied 3001 |
. . . . . . 7
β’ (((π
β V β§ π = π΅) β§ π = + ) β ([ Β· /
π‘][ 0 / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)) β βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 )))) |
60 | 18, 59 | sbcied 3001 |
. . . . . 6
β’ ((π
β V β§ π = π΅) β ([ + / π][ Β· / π‘][ 0 / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)) β βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 )))) |
61 | 13, 60 | sbcied 3001 |
. . . . 5
β’ (π
β V β ([π΅ / π][ + / π][ Β· / π‘][ 0 / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)) β βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 )))) |
62 | 7, 61 | anbi12d 473 |
. . . 4
β’ (π
β V β
(((mulGrpβπ
) β
Mnd β§ [π΅ / π][ + / π][ Β· /
π‘][ 0 / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π))) β (πΊ β Mnd β§ βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 ))))) |
63 | 62 | anbi2d 464 |
. . 3
β’ (π
β V β ((π
β CMnd β§
((mulGrpβπ
) β
Mnd β§ [π΅ / π][ + / π][ Β· /
π‘][ 0 / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)))) β (π
β CMnd β§ (πΊ β Mnd β§ βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 )))))) |
64 | | fveq2 5517 |
. . . . . 6
β’ (π = π
β (mulGrpβπ) = (mulGrpβπ
)) |
65 | 64 | eleq1d 2246 |
. . . . 5
β’ (π = π
β ((mulGrpβπ) β Mnd β (mulGrpβπ
) β Mnd)) |
66 | | fveq2 5517 |
. . . . . . 7
β’ (π = π
β (Baseβπ) = (Baseβπ
)) |
67 | 66, 8 | eqtr4di 2228 |
. . . . . 6
β’ (π = π
β (Baseβπ) = π΅) |
68 | | fveq2 5517 |
. . . . . . . 8
β’ (π = π
β (+gβπ) = (+gβπ
)) |
69 | 68, 14 | eqtr4di 2228 |
. . . . . . 7
β’ (π = π
β (+gβπ) = + ) |
70 | | fveq2 5517 |
. . . . . . . . 9
β’ (π = π
β (.rβπ) = (.rβπ
)) |
71 | 70, 19 | eqtr4di 2228 |
. . . . . . . 8
β’ (π = π
β (.rβπ) = Β· ) |
72 | | fveq2 5517 |
. . . . . . . . . 10
β’ (π = π
β (0gβπ) = (0gβπ
)) |
73 | 72, 24 | eqtr4di 2228 |
. . . . . . . . 9
β’ (π = π
β (0gβπ) = 0 ) |
74 | 73 | sbceq1d 2969 |
. . . . . . . 8
β’ (π = π
β ([(0gβπ) / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)) β [ 0 / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)))) |
75 | 71, 74 | sbceqbid 2971 |
. . . . . . 7
β’ (π = π
β ([(.rβπ) / π‘][(0gβπ) / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)) β [ Β· / π‘][ 0 / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)))) |
76 | 69, 75 | sbceqbid 2971 |
. . . . . 6
β’ (π = π
β ([(+gβπ) / π][(.rβπ) / π‘][(0gβπ) / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)) β [ + / π][ Β· / π‘][ 0 / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)))) |
77 | 67, 76 | sbceqbid 2971 |
. . . . 5
β’ (π = π
β ([(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘][(0gβπ) / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)) β [π΅ / π][ + / π][ Β· / π‘][ 0 / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)))) |
78 | 65, 77 | anbi12d 473 |
. . . 4
β’ (π = π
β (((mulGrpβπ) β Mnd β§ [(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘][(0gβπ) / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π))) β ((mulGrpβπ
) β Mnd β§ [π΅ / π][ + / π][ Β· / π‘][ 0 / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π))))) |
79 | | df-srg 13152 |
. . . 4
β’ SRing =
{π β CMnd β£
((mulGrpβπ) β
Mnd β§ [(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘][(0gβπ) / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π)))} |
80 | 78, 79 | elrab2 2898 |
. . 3
β’ (π
β SRing β (π
β CMnd β§
((mulGrpβπ
) β
Mnd β§ [π΅ / π][ + / π][ Β· /
π‘][ 0 / π]βπ₯ β π (βπ¦ β π βπ§ β π ((π₯π‘(π¦ππ§)) = ((π₯π‘π¦)π(π₯π‘π§)) β§ ((π₯ππ¦)π‘π§) = ((π₯π‘π§)π(π¦π‘π§))) β§ ((ππ‘π₯) = π β§ (π₯π‘π) = π))))) |
81 | | 3anass 982 |
. . 3
β’ ((π
β CMnd β§ πΊ β Mnd β§ βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 ))) β (π
β CMnd β§ (πΊ β Mnd β§ βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 ))))) |
82 | 63, 80, 81 | 3bitr4g 223 |
. 2
β’ (π
β V β (π
β SRing β (π
β CMnd β§ πΊ β Mnd β§ βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 ))))) |
83 | 1, 3, 82 | pm5.21nii 704 |
1
β’ (π
β SRing β (π
β CMnd β§ πΊ β Mnd β§ βπ₯ β π΅ (βπ¦ β π΅ βπ§ β π΅ ((π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§)) β§ ((π₯ + π¦) Β· π§) = ((π₯ Β· π§) + (π¦ Β· π§))) β§ (( 0 Β· π₯) = 0 β§ (π₯ Β· 0 ) = 0 )))) |