ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfung GIF version

Theorem sbcfung 5278
Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcfung (𝐴𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun 𝐴 / 𝑥𝐹))

Proof of Theorem sbcfung
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcan 3028 . . 3 ([𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧)) ↔ ([𝐴 / 𝑥]Rel 𝐹[𝐴 / 𝑥]𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧)))
2 sbcrel 4745 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]Rel 𝐹 ↔ Rel 𝐴 / 𝑥𝐹))
3 sbcal 3037 . . . . 5 ([𝐴 / 𝑥]𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤[𝐴 / 𝑥]𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧))
4 sbcal 3037 . . . . . . 7 ([𝐴 / 𝑥]𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦[𝐴 / 𝑥]𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧))
5 sbcal 3037 . . . . . . . . 9 ([𝐴 / 𝑥]𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧[𝐴 / 𝑥]((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧))
6 sbcimg 3027 . . . . . . . . . . 11 (𝐴𝑉 → ([𝐴 / 𝑥]((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ([𝐴 / 𝑥](𝑤𝐹𝑦𝑤𝐹𝑧) → [𝐴 / 𝑥]𝑦 = 𝑧)))
7 sbcan 3028 . . . . . . . . . . . . 13 ([𝐴 / 𝑥](𝑤𝐹𝑦𝑤𝐹𝑧) ↔ ([𝐴 / 𝑥]𝑤𝐹𝑦[𝐴 / 𝑥]𝑤𝐹𝑧))
8 sbcbrg 4083 . . . . . . . . . . . . . . 15 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑦𝐴 / 𝑥𝑤𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦))
9 csbconstg 3094 . . . . . . . . . . . . . . . 16 (𝐴𝑉𝐴 / 𝑥𝑤 = 𝑤)
10 csbconstg 3094 . . . . . . . . . . . . . . . 16 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
119, 10breq12d 4042 . . . . . . . . . . . . . . 15 (𝐴𝑉 → (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦𝑤𝐴 / 𝑥𝐹𝑦))
128, 11bitrd 188 . . . . . . . . . . . . . 14 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑦))
13 sbcbrg 4083 . . . . . . . . . . . . . . 15 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑧𝐴 / 𝑥𝑤𝐴 / 𝑥𝐹𝐴 / 𝑥𝑧))
14 csbconstg 3094 . . . . . . . . . . . . . . . 16 (𝐴𝑉𝐴 / 𝑥𝑧 = 𝑧)
159, 14breq12d 4042 . . . . . . . . . . . . . . 15 (𝐴𝑉 → (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐹𝐴 / 𝑥𝑧𝑤𝐴 / 𝑥𝐹𝑧))
1613, 15bitrd 188 . . . . . . . . . . . . . 14 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑧𝑤𝐴 / 𝑥𝐹𝑧))
1712, 16anbi12d 473 . . . . . . . . . . . . 13 (𝐴𝑉 → (([𝐴 / 𝑥]𝑤𝐹𝑦[𝐴 / 𝑥]𝑤𝐹𝑧) ↔ (𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧)))
187, 17bitrid 192 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥](𝑤𝐹𝑦𝑤𝐹𝑧) ↔ (𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧)))
19 sbcg 3055 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦 = 𝑧𝑦 = 𝑧))
2018, 19imbi12d 234 . . . . . . . . . . 11 (𝐴𝑉 → (([𝐴 / 𝑥](𝑤𝐹𝑦𝑤𝐹𝑧) → [𝐴 / 𝑥]𝑦 = 𝑧) ↔ ((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
216, 20bitrd 188 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥]((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2221albidv 1835 . . . . . . . . 9 (𝐴𝑉 → (∀𝑧[𝐴 / 𝑥]((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
235, 22bitrid 192 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2423albidv 1835 . . . . . . 7 (𝐴𝑉 → (∀𝑦[𝐴 / 𝑥]𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
254, 24bitrid 192 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2625albidv 1835 . . . . 5 (𝐴𝑉 → (∀𝑤[𝐴 / 𝑥]𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
273, 26bitrid 192 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
282, 27anbi12d 473 . . 3 (𝐴𝑉 → (([𝐴 / 𝑥]Rel 𝐹[𝐴 / 𝑥]𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧)) ↔ (Rel 𝐴 / 𝑥𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧))))
291, 28bitrid 192 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧)) ↔ (Rel 𝐴 / 𝑥𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧))))
30 dffun2 5264 . . 3 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧)))
3130sbcbii 3045 . 2 ([𝐴 / 𝑥]Fun 𝐹[𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐹𝑦𝑤𝐹𝑧) → 𝑦 = 𝑧)))
32 dffun2 5264 . 2 (Fun 𝐴 / 𝑥𝐹 ↔ (Rel 𝐴 / 𝑥𝐹 ∧ ∀𝑤𝑦𝑧((𝑤𝐴 / 𝑥𝐹𝑦𝑤𝐴 / 𝑥𝐹𝑧) → 𝑦 = 𝑧)))
3329, 31, 323bitr4g 223 1 (𝐴𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun 𝐴 / 𝑥𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wcel 2164  [wsbc 2985  csb 3080   class class class wbr 4029  Rel wrel 4664  Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-rel 4666  df-cnv 4667  df-co 4668  df-fun 5256
This theorem is referenced by:  sbcfng  5401
  Copyright terms: Public domain W3C validator