Step | Hyp | Ref
| Expression |
1 | | sbcan 2997 |
. . 3
⊢
([𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤∀𝑦∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧)) ↔ ([𝐴 / 𝑥]Rel 𝐹 ∧ [𝐴 / 𝑥]∀𝑤∀𝑦∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧))) |
2 | | sbcrel 4697 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Rel 𝐹 ↔ Rel ⦋𝐴 / 𝑥⦌𝐹)) |
3 | | sbcal 3006 |
. . . . 5
⊢
([𝐴 / 𝑥]∀𝑤∀𝑦∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤[𝐴 / 𝑥]∀𝑦∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧)) |
4 | | sbcal 3006 |
. . . . . . 7
⊢
([𝐴 / 𝑥]∀𝑦∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦[𝐴 / 𝑥]∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧)) |
5 | | sbcal 3006 |
. . . . . . . . 9
⊢
([𝐴 / 𝑥]∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧[𝐴 / 𝑥]((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧)) |
6 | | sbcimg 2996 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ([𝐴 / 𝑥](𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → [𝐴 / 𝑥]𝑦 = 𝑧))) |
7 | | sbcan 2997 |
. . . . . . . . . . . . 13
⊢
([𝐴 / 𝑥](𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) ↔ ([𝐴 / 𝑥]𝑤𝐹𝑦 ∧ [𝐴 / 𝑥]𝑤𝐹𝑧)) |
8 | | sbcbrg 4043 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝑤⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦)) |
9 | | csbconstg 3063 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑤 = 𝑤) |
10 | | csbconstg 3063 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) |
11 | 9, 10 | breq12d 4002 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑤⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦 ↔ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑦)) |
12 | 8, 11 | bitrd 187 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑦 ↔ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑦)) |
13 | | sbcbrg 4043 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑧 ↔ ⦋𝐴 / 𝑥⦌𝑤⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑧)) |
14 | | csbconstg 3063 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑧 = 𝑧) |
15 | 9, 14 | breq12d 4002 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑤⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑧 ↔ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧)) |
16 | 13, 15 | bitrd 187 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑤𝐹𝑧 ↔ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧)) |
17 | 12, 16 | anbi12d 470 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑤𝐹𝑦 ∧ [𝐴 / 𝑥]𝑤𝐹𝑧) ↔ (𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧))) |
18 | 7, 17 | syl5bb 191 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) ↔ (𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧))) |
19 | | sbcg 3024 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧)) |
20 | 18, 19 | imbi12d 233 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥](𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → [𝐴 / 𝑥]𝑦 = 𝑧) ↔ ((𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧) → 𝑦 = 𝑧))) |
21 | 6, 20 | bitrd 187 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧) → 𝑦 = 𝑧))) |
22 | 21 | albidv 1817 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (∀𝑧[𝐴 / 𝑥]((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧((𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧) → 𝑦 = 𝑧))) |
23 | 5, 22 | syl5bb 191 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑧((𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧) → 𝑦 = 𝑧))) |
24 | 23 | albidv 1817 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (∀𝑦[𝐴 / 𝑥]∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦∀𝑧((𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧) → 𝑦 = 𝑧))) |
25 | 4, 24 | syl5bb 191 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦∀𝑧((𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧) → 𝑦 = 𝑧))) |
26 | 25 | albidv 1817 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∀𝑤[𝐴 / 𝑥]∀𝑦∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤∀𝑦∀𝑧((𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧) → 𝑦 = 𝑧))) |
27 | 3, 26 | syl5bb 191 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑤∀𝑦∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧) ↔ ∀𝑤∀𝑦∀𝑧((𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧) → 𝑦 = 𝑧))) |
28 | 2, 27 | anbi12d 470 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]Rel 𝐹 ∧ [𝐴 / 𝑥]∀𝑤∀𝑦∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧)) ↔ (Rel ⦋𝐴 / 𝑥⦌𝐹 ∧ ∀𝑤∀𝑦∀𝑧((𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧) → 𝑦 = 𝑧)))) |
29 | 1, 28 | syl5bb 191 |
. 2
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤∀𝑦∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧)) ↔ (Rel ⦋𝐴 / 𝑥⦌𝐹 ∧ ∀𝑤∀𝑦∀𝑧((𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧) → 𝑦 = 𝑧)))) |
30 | | dffun2 5208 |
. . 3
⊢ (Fun
𝐹 ↔ (Rel 𝐹 ∧ ∀𝑤∀𝑦∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧))) |
31 | 30 | sbcbii 3014 |
. 2
⊢
([𝐴 / 𝑥]Fun 𝐹 ↔ [𝐴 / 𝑥](Rel 𝐹 ∧ ∀𝑤∀𝑦∀𝑧((𝑤𝐹𝑦 ∧ 𝑤𝐹𝑧) → 𝑦 = 𝑧))) |
32 | | dffun2 5208 |
. 2
⊢ (Fun
⦋𝐴 / 𝑥⦌𝐹 ↔ (Rel ⦋𝐴 / 𝑥⦌𝐹 ∧ ∀𝑤∀𝑦∀𝑧((𝑤⦋𝐴 / 𝑥⦌𝐹𝑦 ∧ 𝑤⦋𝐴 / 𝑥⦌𝐹𝑧) → 𝑦 = 𝑧))) |
33 | 29, 31, 32 | 3bitr4g 222 |
1
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Fun 𝐹 ↔ Fun ⦋𝐴 / 𝑥⦌𝐹)) |