ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcth2 GIF version

Theorem sbcth2 3073
Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
sbcth2.1 (𝑥𝐵𝜑)
Assertion
Ref Expression
sbcth2 (𝐴𝐵[𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem sbcth2
StepHypRef Expression
1 sbcth2.1 . . 3 (𝑥𝐵𝜑)
21rgen 2547 . 2 𝑥𝐵 𝜑
3 rspsbc 3068 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
42, 3mpi 15 1 (𝐴𝐵[𝐴 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wral 2472  [wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-sbc 2986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator