| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcth2 | GIF version | ||
| Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcth2.1 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| sbcth2 | ⊢ (𝐴 ∈ 𝐵 → [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcth2.1 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 2 | 1 | rgen 2583 | . 2 ⊢ ∀𝑥 ∈ 𝐵 𝜑 |
| 3 | rspsbc 3112 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) | |
| 4 | 2, 3 | mpi 15 | 1 ⊢ (𝐴 ∈ 𝐵 → [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∀wral 2508 [wsbc 3028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-sbc 3029 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |