Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snidg | GIF version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
snidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2175 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | elsng 3604 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴} ↔ 𝐴 = 𝐴)) | |
3 | 1, 2 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 {csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sn 3595 |
This theorem is referenced by: snidb 3619 elsn2g 3622 snnzg 3706 snmg 3707 exmidsssnc 4198 fvunsng 5702 fsnunfv 5709 1stconst 6212 2ndconst 6213 tfr0dm 6313 tfrlemibxssdm 6318 tfrlemi14d 6324 tfr1onlembxssdm 6334 tfr1onlemres 6340 tfrcllembxssdm 6347 tfrcllemres 6353 en1uniel 6794 onunsnss 6906 snon0 6925 supsnti 6994 fseq1p1m1 10062 elfzomin 10174 fsumsplitsnun 11393 divalgmod 11897 setsslid 12477 1strbas 12528 srnginvld 12555 lmodvscad 12569 mgm1 12653 mnd1id 12709 0subm 12731 cnpdis 13311 bj-sels 14224 |
Copyright terms: Public domain | W3C validator |