![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snidg | GIF version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
snidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2100 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | elsng 3489 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴} ↔ 𝐴 = 𝐴)) | |
3 | 1, 2 | mpbiri 167 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∈ wcel 1448 {csn 3474 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-sn 3480 |
This theorem is referenced by: snidb 3502 elsn2g 3505 snnzg 3587 snmg 3588 exmidsssnc 4064 fvunsng 5546 fsnunfv 5553 1stconst 6048 2ndconst 6049 tfr0dm 6149 tfrlemibxssdm 6154 tfrlemi14d 6160 tfr1onlembxssdm 6170 tfr1onlemres 6176 tfrcllembxssdm 6183 tfrcllemres 6189 en1uniel 6628 onunsnss 6734 snon0 6752 supsnti 6807 fseq1p1m1 9715 elfzomin 9824 fsumsplitsnun 11027 divalgmod 11419 setsslid 11791 1strbas 11840 srnginvld 11867 lmodvscad 11878 cnpdis 12192 bj-sels 12693 |
Copyright terms: Public domain | W3C validator |