| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snidg | GIF version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
| Ref | Expression |
|---|---|
| snidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | elsng 3681 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴} ↔ 𝐴 = 𝐴)) | |
| 3 | 1, 2 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: snidb 3696 elsn2g 3699 snnzg 3784 snmg 3785 exmidsssnc 4287 fvunsng 5837 fsnunfv 5844 1stconst 6373 2ndconst 6374 tfr0dm 6474 tfrlemibxssdm 6479 tfrlemi14d 6485 tfr1onlembxssdm 6495 tfr1onlemres 6501 tfrcllembxssdm 6508 tfrcllemres 6514 en1uniel 6964 onunsnss 7087 snon0 7110 supsnti 7180 fseq1p1m1 10298 elfzomin 10420 swrds1 11208 fsumsplitsnun 11938 divalgmod 12446 setsslid 13091 bassetsnn 13097 1strbas 13158 srnginvld 13191 lmodvscad 13209 mgm1 13411 mnd1id 13497 0subm 13525 cnpdis 14924 upgr1edc 15929 wlk1walkdom 16080 bj-sels 16301 |
| Copyright terms: Public domain | W3C validator |