Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snidg | GIF version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
snidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | elsng 3591 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴} ↔ 𝐴 = 𝐴)) | |
3 | 1, 2 | mpbiri 167 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sn 3582 |
This theorem is referenced by: snidb 3606 elsn2g 3609 snnzg 3693 snmg 3694 exmidsssnc 4182 fvunsng 5679 fsnunfv 5686 1stconst 6189 2ndconst 6190 tfr0dm 6290 tfrlemibxssdm 6295 tfrlemi14d 6301 tfr1onlembxssdm 6311 tfr1onlemres 6317 tfrcllembxssdm 6324 tfrcllemres 6330 en1uniel 6770 onunsnss 6882 snon0 6901 supsnti 6970 fseq1p1m1 10029 elfzomin 10141 fsumsplitsnun 11360 divalgmod 11864 setsslid 12444 1strbas 12494 srnginvld 12521 lmodvscad 12532 mgm1 12601 cnpdis 12882 bj-sels 13796 |
Copyright terms: Public domain | W3C validator |