Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snidg | GIF version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
snidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | elsng 3598 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴} ↔ 𝐴 = 𝐴)) | |
3 | 1, 2 | mpbiri 167 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sn 3589 |
This theorem is referenced by: snidb 3613 elsn2g 3616 snnzg 3700 snmg 3701 exmidsssnc 4189 fvunsng 5690 fsnunfv 5697 1stconst 6200 2ndconst 6201 tfr0dm 6301 tfrlemibxssdm 6306 tfrlemi14d 6312 tfr1onlembxssdm 6322 tfr1onlemres 6328 tfrcllembxssdm 6335 tfrcllemres 6341 en1uniel 6782 onunsnss 6894 snon0 6913 supsnti 6982 fseq1p1m1 10050 elfzomin 10162 fsumsplitsnun 11382 divalgmod 11886 setsslid 12466 1strbas 12517 srnginvld 12544 lmodvscad 12555 mgm1 12624 mnd1id 12680 0subm 12702 cnpdis 13036 bj-sels 13949 |
Copyright terms: Public domain | W3C validator |