| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > snidg | GIF version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) | 
| Ref | Expression | 
|---|---|
| snidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | elsng 3637 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴} ↔ 𝐴 = 𝐴)) | |
| 3 | 1, 2 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {csn 3622 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3628 | 
| This theorem is referenced by: snidb 3652 elsn2g 3655 snnzg 3739 snmg 3740 exmidsssnc 4236 fvunsng 5756 fsnunfv 5763 1stconst 6279 2ndconst 6280 tfr0dm 6380 tfrlemibxssdm 6385 tfrlemi14d 6391 tfr1onlembxssdm 6401 tfr1onlemres 6407 tfrcllembxssdm 6414 tfrcllemres 6420 en1uniel 6863 onunsnss 6978 snon0 7001 supsnti 7071 fseq1p1m1 10169 elfzomin 10282 fsumsplitsnun 11584 divalgmod 12092 setsslid 12729 1strbas 12795 srnginvld 12827 lmodvscad 12845 mgm1 13013 mnd1id 13088 0subm 13116 cnpdis 14478 bj-sels 15560 | 
| Copyright terms: Public domain | W3C validator |