| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snidg | GIF version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
| Ref | Expression |
|---|---|
| snidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | elsng 3650 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴} ↔ 𝐴 = 𝐴)) | |
| 3 | 1, 2 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {csn 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sn 3641 |
| This theorem is referenced by: snidb 3665 elsn2g 3668 snnzg 3752 snmg 3753 exmidsssnc 4252 fvunsng 5788 fsnunfv 5795 1stconst 6317 2ndconst 6318 tfr0dm 6418 tfrlemibxssdm 6423 tfrlemi14d 6429 tfr1onlembxssdm 6439 tfr1onlemres 6445 tfrcllembxssdm 6452 tfrcllemres 6458 en1uniel 6906 onunsnss 7026 snon0 7049 supsnti 7119 fseq1p1m1 10229 elfzomin 10348 swrds1 11135 fsumsplitsnun 11780 divalgmod 12288 setsslid 12933 1strbas 12999 srnginvld 13032 lmodvscad 13050 mgm1 13252 mnd1id 13338 0subm 13366 cnpdis 14764 upgr1edc 15764 bj-sels 15964 |
| Copyright terms: Public domain | W3C validator |