| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snidg | GIF version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 28-Oct-2003.) |
| Ref | Expression |
|---|---|
| snidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | elsng 3681 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴} ↔ 𝐴 = 𝐴)) | |
| 3 | 1, 2 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: snidb 3696 elsn2g 3699 snnzg 3783 snmg 3784 exmidsssnc 4286 fvunsng 5826 fsnunfv 5833 1stconst 6357 2ndconst 6358 tfr0dm 6458 tfrlemibxssdm 6463 tfrlemi14d 6469 tfr1onlembxssdm 6479 tfr1onlemres 6485 tfrcllembxssdm 6492 tfrcllemres 6498 en1uniel 6946 onunsnss 7067 snon0 7090 supsnti 7160 fseq1p1m1 10278 elfzomin 10399 swrds1 11186 fsumsplitsnun 11916 divalgmod 12424 setsslid 13069 bassetsnn 13075 1strbas 13136 srnginvld 13169 lmodvscad 13187 mgm1 13389 mnd1id 13475 0subm 13503 cnpdis 14901 upgr1edc 15906 bj-sels 16207 |
| Copyright terms: Public domain | W3C validator |