Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snid | GIF version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
snid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snid | ⊢ 𝐴 ∈ {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snidb 3611 | . 2 ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ 𝐴 ∈ {𝐴} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 {csn 3581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sn 3587 |
This theorem is referenced by: vsnid 3613 exsnrex 3623 rabsnt 3656 sneqr 3745 undifexmid 4177 exmidexmid 4180 ss1o0el1 4181 exmidundif 4190 exmidundifim 4191 unipw 4200 intid 4207 ordtriexmidlem2 4502 ordtriexmid 4503 ontriexmidim 4504 ordtri2orexmid 4505 regexmidlem1 4515 0elsucexmid 4547 ordpwsucexmid 4552 opthprc 4660 fsn 5665 fsn2 5667 fvsn 5688 fvsnun1 5690 acexmidlema 5841 acexmidlemb 5842 acexmidlemab 5844 brtpos0 6228 mapsn 6664 mapsncnv 6669 0elixp 6703 en1 6773 djulclr 7022 djurclr 7023 djulcl 7024 djurcl 7025 djuf1olem 7026 exmidonfinlem 7157 elreal2 7779 1exp 10492 hashinfuni 10698 ennnfonelemhom 12357 dvef 13403 djucllem 13756 bj-d0clsepcl 13882 exmid1stab 13955 |
Copyright terms: Public domain | W3C validator |