| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snid | GIF version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| snid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snid | ⊢ 𝐴 ∈ {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snidb 3653 | . 2 ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ 𝐴 ∈ {𝐴} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3629 |
| This theorem is referenced by: vsnid 3655 exsnrex 3665 rabsnt 3698 sneqr 3791 undifexmid 4227 exmidexmid 4230 ss1o0el1 4231 exmidundif 4240 exmidundifim 4241 exmid1stab 4242 unipw 4251 intid 4258 ordtriexmidlem2 4557 ordtriexmid 4558 ontriexmidim 4559 ordtri2orexmid 4560 regexmidlem1 4570 0elsucexmid 4602 ordpwsucexmid 4607 opthprc 4715 fsn 5737 fsn2 5739 fvsn 5760 fvsnun1 5762 acexmidlema 5916 acexmidlemb 5917 acexmidlemab 5919 brtpos0 6319 mapsn 6758 mapsncnv 6763 0elixp 6797 en1 6867 djulclr 7124 djurclr 7125 djulcl 7126 djurcl 7127 djuf1olem 7128 exmidonfinlem 7272 elreal2 7914 1exp 10677 hashinfuni 10886 wrdexb 10964 0bits 12141 ennnfonelemhom 12657 dvef 15047 djucllem 15530 bj-d0clsepcl 15655 |
| Copyright terms: Public domain | W3C validator |