ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snid GIF version

Theorem snid 3607
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.)
Hypothesis
Ref Expression
snid.1 𝐴 ∈ V
Assertion
Ref Expression
snid 𝐴 ∈ {𝐴}

Proof of Theorem snid
StepHypRef Expression
1 snid.1 . 2 𝐴 ∈ V
2 snidb 3606 . 2 (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})
31, 2mpbi 144 1 𝐴 ∈ {𝐴}
Colors of variables: wff set class
Syntax hints:  wcel 2136  Vcvv 2726  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sn 3582
This theorem is referenced by:  vsnid  3608  exsnrex  3618  rabsnt  3651  sneqr  3740  undifexmid  4172  exmidexmid  4175  ss1o0el1  4176  exmidundif  4185  exmidundifim  4186  unipw  4195  intid  4202  ordtriexmidlem2  4497  ordtriexmid  4498  ontriexmidim  4499  ordtri2orexmid  4500  regexmidlem1  4510  0elsucexmid  4542  ordpwsucexmid  4547  opthprc  4655  fsn  5657  fsn2  5659  fvsn  5680  fvsnun1  5682  acexmidlema  5833  acexmidlemb  5834  acexmidlemab  5836  brtpos0  6220  mapsn  6656  mapsncnv  6661  0elixp  6695  en1  6765  djulclr  7014  djurclr  7015  djulcl  7016  djurcl  7017  djuf1olem  7018  exmidonfinlem  7149  elreal2  7771  1exp  10484  hashinfuni  10690  ennnfonelemhom  12348  dvef  13328  djucllem  13681  bj-d0clsepcl  13807  exmid1stab  13880
  Copyright terms: Public domain W3C validator