| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snid | GIF version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| snid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snid | ⊢ 𝐴 ∈ {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snidb 3696 | . 2 ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ 𝐴 ∈ {𝐴} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: vsnid 3698 exsnrex 3708 rabsnt 3741 sneqr 3838 undifexmid 4277 exmidexmid 4280 ss1o0el1 4281 exmidundif 4290 exmidundifim 4291 exmid1stab 4292 unipw 4303 intid 4310 ordtriexmidlem2 4612 ordtriexmid 4613 ontriexmidim 4614 ordtri2orexmid 4615 regexmidlem1 4625 0elsucexmid 4657 ordpwsucexmid 4662 opthprc 4770 fsn 5809 fsn2 5811 fvsn 5838 fvsnun1 5840 acexmidlema 5998 acexmidlemb 5999 acexmidlemab 6001 brtpos0 6404 mapsn 6845 mapsncnv 6850 0elixp 6884 en1 6959 djulclr 7224 djurclr 7225 djulcl 7226 djurcl 7227 djuf1olem 7228 exmidonfinlem 7379 elreal2 8025 1exp 10798 hashinfuni 11007 wrdexb 11091 0bits 12478 ennnfonelemhom 12994 dvef 15409 wlkl1loop 16079 djucllem 16188 bj-d0clsepcl 16312 |
| Copyright terms: Public domain | W3C validator |