| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snid | GIF version | ||
| Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| snid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snid | ⊢ 𝐴 ∈ {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snidb 3696 | . 2 ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ 𝐴 ∈ {𝐴} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: vsnid 3698 exsnrex 3708 rabsnt 3741 sneqr 3837 undifexmid 4276 exmidexmid 4279 ss1o0el1 4280 exmidundif 4289 exmidundifim 4290 exmid1stab 4291 unipw 4302 intid 4309 ordtriexmidlem2 4609 ordtriexmid 4610 ontriexmidim 4611 ordtri2orexmid 4612 regexmidlem1 4622 0elsucexmid 4654 ordpwsucexmid 4659 opthprc 4767 fsn 5800 fsn2 5802 fvsn 5827 fvsnun1 5829 acexmidlema 5985 acexmidlemb 5986 acexmidlemab 5988 brtpos0 6388 mapsn 6827 mapsncnv 6832 0elixp 6866 en1 6941 djulclr 7204 djurclr 7205 djulcl 7206 djurcl 7207 djuf1olem 7208 exmidonfinlem 7359 elreal2 8005 1exp 10777 hashinfuni 10986 wrdexb 11070 0bits 12456 ennnfonelemhom 12972 dvef 15386 djucllem 16094 bj-d0clsepcl 16218 |
| Copyright terms: Public domain | W3C validator |