Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snid | GIF version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
snid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snid | ⊢ 𝐴 ∈ {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snidb 3606 | . 2 ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ 𝐴 ∈ {𝐴} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sn 3582 |
This theorem is referenced by: vsnid 3608 exsnrex 3618 rabsnt 3651 sneqr 3740 undifexmid 4172 exmidexmid 4175 ss1o0el1 4176 exmidundif 4185 exmidundifim 4186 unipw 4195 intid 4202 ordtriexmidlem2 4497 ordtriexmid 4498 ontriexmidim 4499 ordtri2orexmid 4500 regexmidlem1 4510 0elsucexmid 4542 ordpwsucexmid 4547 opthprc 4655 fsn 5657 fsn2 5659 fvsn 5680 fvsnun1 5682 acexmidlema 5833 acexmidlemb 5834 acexmidlemab 5836 brtpos0 6220 mapsn 6656 mapsncnv 6661 0elixp 6695 en1 6765 djulclr 7014 djurclr 7015 djulcl 7016 djurcl 7017 djuf1olem 7018 exmidonfinlem 7149 elreal2 7771 1exp 10484 hashinfuni 10690 ennnfonelemhom 12348 dvef 13328 djucllem 13681 bj-d0clsepcl 13807 exmid1stab 13880 |
Copyright terms: Public domain | W3C validator |