ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snid GIF version

Theorem snid 3654
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.)
Hypothesis
Ref Expression
snid.1 𝐴 ∈ V
Assertion
Ref Expression
snid 𝐴 ∈ {𝐴}

Proof of Theorem snid
StepHypRef Expression
1 snid.1 . 2 𝐴 ∈ V
2 snidb 3653 . 2 (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})
31, 2mpbi 145 1 𝐴 ∈ {𝐴}
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763  {csn 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sn 3629
This theorem is referenced by:  vsnid  3655  exsnrex  3665  rabsnt  3698  sneqr  3791  undifexmid  4227  exmidexmid  4230  ss1o0el1  4231  exmidundif  4240  exmidundifim  4241  exmid1stab  4242  unipw  4251  intid  4258  ordtriexmidlem2  4557  ordtriexmid  4558  ontriexmidim  4559  ordtri2orexmid  4560  regexmidlem1  4570  0elsucexmid  4602  ordpwsucexmid  4607  opthprc  4715  fsn  5737  fsn2  5739  fvsn  5760  fvsnun1  5762  acexmidlema  5916  acexmidlemb  5917  acexmidlemab  5919  brtpos0  6319  mapsn  6758  mapsncnv  6763  0elixp  6797  en1  6867  djulclr  7124  djurclr  7125  djulcl  7126  djurcl  7127  djuf1olem  7128  exmidonfinlem  7272  elreal2  7914  1exp  10677  hashinfuni  10886  wrdexb  10964  0bits  12141  ennnfonelemhom  12657  dvef  15047  djucllem  15530  bj-d0clsepcl  15655
  Copyright terms: Public domain W3C validator