Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snid | GIF version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
snid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snid | ⊢ 𝐴 ∈ {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snidb 3613 | . 2 ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴}) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ 𝐴 ∈ {𝐴} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sn 3589 |
This theorem is referenced by: vsnid 3615 exsnrex 3625 rabsnt 3658 sneqr 3747 undifexmid 4179 exmidexmid 4182 ss1o0el1 4183 exmidundif 4192 exmidundifim 4193 unipw 4202 intid 4209 ordtriexmidlem2 4504 ordtriexmid 4505 ontriexmidim 4506 ordtri2orexmid 4507 regexmidlem1 4517 0elsucexmid 4549 ordpwsucexmid 4554 opthprc 4662 fsn 5668 fsn2 5670 fvsn 5691 fvsnun1 5693 acexmidlema 5844 acexmidlemb 5845 acexmidlemab 5847 brtpos0 6231 mapsn 6668 mapsncnv 6673 0elixp 6707 en1 6777 djulclr 7026 djurclr 7027 djulcl 7028 djurcl 7029 djuf1olem 7030 exmidonfinlem 7170 elreal2 7792 1exp 10505 hashinfuni 10711 ennnfonelemhom 12370 dvef 13482 djucllem 13835 bj-d0clsepcl 13960 exmid1stab 14033 |
Copyright terms: Public domain | W3C validator |