![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim2d | GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 331 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: spsbim 1795 ssel 3055 sscon 3174 uniss 3721 trel3 3992 copsexg 4124 ssopab2 4155 coss1 4652 fununi 5147 imadif 5159 fss 5240 ssimaex 5434 opabbrex 5767 ssoprab2 5779 poxp 6081 pmss12g 6521 ss2ixp 6557 xpdom2 6676 qbtwnxr 9922 ioc0 9927 climshftlemg 10957 bezoutlembz 11532 tgcl 12070 neipsm 12160 ssnei2 12163 tgcnp 12214 cnpnei 12224 cnptopco 12227 mopni3 12467 limcresi 12585 cnlimcim 12590 |
Copyright terms: Public domain | W3C validator |