![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim2d | GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 335 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: spsbim 1854 ssel 3174 sscon 3294 uniss 3857 trel3 4136 copsexg 4274 ssopab2 4307 coss1 4818 fununi 5323 imadif 5335 fss 5416 ssimaex 5619 opabbrex 5963 ssoprab2 5975 poxp 6287 pmss12g 6731 ss2ixp 6767 xpdom2 6887 qbtwnxr 10329 ioc0 10334 climshftlemg 11448 bezoutlembz 12144 tgcl 14243 neipsm 14333 ssnei2 14336 tgcnp 14388 cnpnei 14398 cnptopco 14401 mopni3 14663 limcresi 14845 cnlimcim 14850 |
Copyright terms: Public domain | W3C validator |