| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2d | GIF version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | anim12d 335 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: spsbim 1889 ssel 3218 sscon 3338 uniss 3909 trel3 4190 copsexg 4330 ssopab2 4364 coss1 4877 fununi 5389 imadif 5401 fss 5485 ssimaex 5697 opabbrex 6054 ssoprab2 6066 poxp 6384 pmss12g 6830 ss2ixp 6866 xpdom2 6998 qbtwnxr 10485 ioc0 10490 climshftlemg 11821 bezoutlembz 12533 tgcl 14746 neipsm 14836 ssnei2 14839 tgcnp 14891 cnpnei 14901 cnptopco 14904 mopni3 15166 limcresi 15348 cnlimcim 15353 |
| Copyright terms: Public domain | W3C validator |