Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anim2d | GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 333 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: spsbim 1820 ssel 3118 sscon 3237 uniss 3789 trel3 4066 copsexg 4199 ssopab2 4230 coss1 4734 fununi 5231 imadif 5243 fss 5324 ssimaex 5522 opabbrex 5855 ssoprab2 5867 poxp 6169 pmss12g 6609 ss2ixp 6645 xpdom2 6765 qbtwnxr 10135 ioc0 10140 climshftlemg 11176 bezoutlembz 11859 tgcl 12403 neipsm 12493 ssnei2 12496 tgcnp 12548 cnpnei 12558 cnptopco 12561 mopni3 12823 limcresi 12974 cnlimcim 12979 |
Copyright terms: Public domain | W3C validator |