| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2d | GIF version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | anim12d 335 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: spsbim 1869 ssel 3198 sscon 3318 uniss 3888 trel3 4169 copsexg 4309 ssopab2 4343 coss1 4854 fununi 5365 imadif 5377 fss 5461 ssimaex 5668 opabbrex 6019 ssoprab2 6031 poxp 6348 pmss12g 6792 ss2ixp 6828 xpdom2 6958 qbtwnxr 10444 ioc0 10449 climshftlemg 11779 bezoutlembz 12491 tgcl 14703 neipsm 14793 ssnei2 14796 tgcnp 14848 cnpnei 14858 cnptopco 14861 mopni3 15123 limcresi 15305 cnlimcim 15310 |
| Copyright terms: Public domain | W3C validator |