Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anim2d | GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 333 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: spsbim 1836 ssel 3141 sscon 3261 uniss 3817 trel3 4095 copsexg 4229 ssopab2 4260 coss1 4766 fununi 5266 imadif 5278 fss 5359 ssimaex 5557 opabbrex 5897 ssoprab2 5909 poxp 6211 pmss12g 6653 ss2ixp 6689 xpdom2 6809 qbtwnxr 10214 ioc0 10219 climshftlemg 11265 bezoutlembz 11959 tgcl 12858 neipsm 12948 ssnei2 12951 tgcnp 13003 cnpnei 13013 cnptopco 13016 mopni3 13278 limcresi 13429 cnlimcim 13434 |
Copyright terms: Public domain | W3C validator |