Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anim2d | GIF version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | anim12d 333 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: spsbim 1831 ssel 3136 sscon 3256 uniss 3810 trel3 4088 copsexg 4222 ssopab2 4253 coss1 4759 fununi 5256 imadif 5268 fss 5349 ssimaex 5547 opabbrex 5886 ssoprab2 5898 poxp 6200 pmss12g 6641 ss2ixp 6677 xpdom2 6797 qbtwnxr 10193 ioc0 10198 climshftlemg 11243 bezoutlembz 11937 tgcl 12704 neipsm 12794 ssnei2 12797 tgcnp 12849 cnpnei 12859 cnptopco 12862 mopni3 13124 limcresi 13275 cnlimcim 13280 |
Copyright terms: Public domain | W3C validator |