ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim2d GIF version

Theorem anim2d 337
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
anim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anim2d (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Proof of Theorem anim2d
StepHypRef Expression
1 idd 21 . 2 (𝜑 → (𝜃𝜃))
2 anim1d.1 . 2 (𝜑 → (𝜓𝜒))
31, 2anim12d 335 1 (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  spsbim  1889  ssel  3218  sscon  3338  uniss  3909  trel3  4190  copsexg  4330  ssopab2  4364  coss1  4877  fununi  5389  imadif  5401  fss  5485  ssimaex  5697  opabbrex  6054  ssoprab2  6066  poxp  6384  pmss12g  6830  ss2ixp  6866  xpdom2  6998  qbtwnxr  10485  ioc0  10490  climshftlemg  11821  bezoutlembz  12533  tgcl  14746  neipsm  14836  ssnei2  14839  tgcnp  14891  cnpnei  14901  cnptopco  14904  mopni3  15166  limcresi  15348  cnlimcim  15353
  Copyright terms: Public domain W3C validator