| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2d | GIF version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | anim12d 335 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: spsbim 1857 ssel 3178 sscon 3298 uniss 3861 trel3 4140 copsexg 4278 ssopab2 4311 coss1 4822 fununi 5327 imadif 5339 fss 5422 ssimaex 5625 opabbrex 5970 ssoprab2 5982 poxp 6299 pmss12g 6743 ss2ixp 6779 xpdom2 6899 qbtwnxr 10366 ioc0 10371 climshftlemg 11486 bezoutlembz 12198 tgcl 14386 neipsm 14476 ssnei2 14479 tgcnp 14531 cnpnei 14541 cnptopco 14544 mopni3 14806 limcresi 14988 cnlimcim 14993 |
| Copyright terms: Public domain | W3C validator |