| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2d | GIF version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim2d | ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 2 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | anim12d 335 | 1 ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: spsbim 1867 ssel 3188 sscon 3308 uniss 3873 trel3 4154 copsexg 4292 ssopab2 4326 coss1 4837 fununi 5347 imadif 5359 fss 5443 ssimaex 5647 opabbrex 5996 ssoprab2 6008 poxp 6325 pmss12g 6769 ss2ixp 6805 xpdom2 6933 qbtwnxr 10407 ioc0 10412 climshftlemg 11657 bezoutlembz 12369 tgcl 14580 neipsm 14670 ssnei2 14673 tgcnp 14725 cnpnei 14735 cnptopco 14738 mopni3 15000 limcresi 15182 cnlimcim 15187 |
| Copyright terms: Public domain | W3C validator |