ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sscon GIF version

Theorem sscon 3318
Description: Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
sscon (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))

Proof of Theorem sscon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3198 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21con3d 634 . . . 4 (𝐴𝐵 → (¬ 𝑥𝐵 → ¬ 𝑥𝐴))
32anim2d 337 . . 3 (𝐴𝐵 → ((𝑥𝐶 ∧ ¬ 𝑥𝐵) → (𝑥𝐶 ∧ ¬ 𝑥𝐴)))
4 eldif 3186 . . 3 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
5 eldif 3186 . . 3 (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
63, 4, 53imtr4g 205 . 2 (𝐴𝐵 → (𝑥 ∈ (𝐶𝐵) → 𝑥 ∈ (𝐶𝐴)))
76ssrdv 3210 1 (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2180  cdif 3174  wss 3177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-dif 3179  df-in 3183  df-ss 3190
This theorem is referenced by:  sscond  3321  sbthlem1  7092  sbthlem2  7093
  Copyright terms: Public domain W3C validator