![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sscon | GIF version |
Description: Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
sscon | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3173 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | con3d 632 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
3 | 2 | anim2d 337 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴))) |
4 | eldif 3162 | . . 3 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
5 | eldif 3162 | . . 3 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴)) | |
6 | 3, 4, 5 | 3imtr4g 205 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐶 ∖ 𝐵) → 𝑥 ∈ (𝐶 ∖ 𝐴))) |
7 | 6 | ssrdv 3185 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2164 ∖ cdif 3150 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 |
This theorem is referenced by: sscond 3296 sbthlem1 7016 sbthlem2 7017 |
Copyright terms: Public domain | W3C validator |