ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsresg GIF version

Theorem setsresg 12514
Description: The structure replacement function does not affect the value of 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
setsresg ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))

Proof of Theorem setsresg
StepHypRef Expression
1 opexg 4240 . . . . 5 ((𝐴𝑊𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
2 setsvalg 12506 . . . . 5 ((𝑆𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
31, 2sylan2 286 . . . 4 ((𝑆𝑉 ∧ (𝐴𝑊𝐵𝑋)) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
433impb 1200 . . 3 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
54reseq1d 4918 . 2 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})))
6 resundir 4933 . . 3 (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})))
7 dmsnopg 5112 . . . . . . . . 9 (𝐵𝑋 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
873ad2ant3 1021 . . . . . . . 8 ((𝑆𝑉𝐴𝑊𝐵𝑋) → dom {⟨𝐴, 𝐵⟩} = {𝐴})
9 eqimss 3221 . . . . . . . 8 (dom {⟨𝐴, 𝐵⟩} = {𝐴} → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
108, 9syl 14 . . . . . . 7 ((𝑆𝑉𝐴𝑊𝐵𝑋) → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
1110sscond 3284 . . . . . 6 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}))
12 resabs1 4948 . . . . . 6 ((V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}) → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
1311, 12syl 14 . . . . 5 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
14 dmres 4940 . . . . . . 7 dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩})
15 disj2 3490 . . . . . . . 8 (((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩}) = ∅ ↔ (V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}))
1611, 15sylibr 134 . . . . . . 7 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩}) = ∅)
1714, 16eqtrid 2232 . . . . . 6 ((𝑆𝑉𝐴𝑊𝐵𝑋) → dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅)
18 relres 4947 . . . . . . 7 Rel ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))
19 reldm0 4857 . . . . . . 7 (Rel ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) → (({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅))
2018, 19ax-mp 5 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅)
2117, 20sylibr 134 . . . . 5 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅)
2213, 21uneq12d 3302 . . . 4 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅))
23 un0 3468 . . . 4 ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅) = (𝑆 ↾ (V ∖ {𝐴}))
2422, 23eqtrdi 2236 . . 3 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))) = (𝑆 ↾ (V ∖ {𝐴})))
256, 24eqtrid 2232 . 2 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
265, 25eqtrd 2220 1 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 979   = wceq 1363  wcel 2158  Vcvv 2749  cdif 3138  cun 3139  cin 3140  wss 3141  c0 3434  {csn 3604  cop 3607  dom cdm 4638  cres 4640  Rel wrel 4643  (class class class)co 5888   sSet csts 12474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-res 4650  df-iota 5190  df-fun 5230  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-sets 12483
This theorem is referenced by:  setsabsd  12515  setsslnid  12528
  Copyright terms: Public domain W3C validator