ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsresg GIF version

Theorem setsresg 13056
Description: The structure replacement function does not affect the value of 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
setsresg ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))

Proof of Theorem setsresg
StepHypRef Expression
1 opexg 4313 . . . . 5 ((𝐴𝑊𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
2 setsvalg 13048 . . . . 5 ((𝑆𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
31, 2sylan2 286 . . . 4 ((𝑆𝑉 ∧ (𝐴𝑊𝐵𝑋)) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
433impb 1223 . . 3 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
54reseq1d 5000 . 2 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})))
6 resundir 5015 . . 3 (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})))
7 dmsnopg 5196 . . . . . . . . 9 (𝐵𝑋 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
873ad2ant3 1044 . . . . . . . 8 ((𝑆𝑉𝐴𝑊𝐵𝑋) → dom {⟨𝐴, 𝐵⟩} = {𝐴})
9 eqimss 3278 . . . . . . . 8 (dom {⟨𝐴, 𝐵⟩} = {𝐴} → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
108, 9syl 14 . . . . . . 7 ((𝑆𝑉𝐴𝑊𝐵𝑋) → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
1110sscond 3341 . . . . . 6 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}))
12 resabs1 5030 . . . . . 6 ((V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}) → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
1311, 12syl 14 . . . . 5 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
14 dmres 5022 . . . . . . 7 dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩})
15 disj2 3547 . . . . . . . 8 (((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩}) = ∅ ↔ (V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}))
1611, 15sylibr 134 . . . . . . 7 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩}) = ∅)
1714, 16eqtrid 2274 . . . . . 6 ((𝑆𝑉𝐴𝑊𝐵𝑋) → dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅)
18 relres 5029 . . . . . . 7 Rel ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))
19 reldm0 4938 . . . . . . 7 (Rel ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) → (({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅))
2018, 19ax-mp 5 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅)
2117, 20sylibr 134 . . . . 5 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅)
2213, 21uneq12d 3359 . . . 4 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅))
23 un0 3525 . . . 4 ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅) = (𝑆 ↾ (V ∖ {𝐴}))
2422, 23eqtrdi 2278 . . 3 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))) = (𝑆 ↾ (V ∖ {𝐴})))
256, 24eqtrid 2274 . 2 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
265, 25eqtrd 2262 1 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  cdif 3194  cun 3195  cin 3196  wss 3197  c0 3491  {csn 3666  cop 3669  dom cdm 4716  cres 4718  Rel wrel 4721  (class class class)co 5994   sSet csts 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-res 4728  df-iota 5274  df-fun 5316  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-sets 13025
This theorem is referenced by:  setsabsd  13057  setsslnid  13070
  Copyright terms: Public domain W3C validator