ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsresg GIF version

Theorem setsresg 12454
Description: The structure replacement function does not affect the value of 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
setsresg ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))

Proof of Theorem setsresg
StepHypRef Expression
1 opexg 4213 . . . . 5 ((𝐴𝑊𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ V)
2 setsvalg 12446 . . . . 5 ((𝑆𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
31, 2sylan2 284 . . . 4 ((𝑆𝑉 ∧ (𝐴𝑊𝐵𝑋)) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
433impb 1194 . . 3 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
54reseq1d 4890 . 2 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})))
6 resundir 4905 . . 3 (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})))
7 dmsnopg 5082 . . . . . . . . 9 (𝐵𝑋 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
873ad2ant3 1015 . . . . . . . 8 ((𝑆𝑉𝐴𝑊𝐵𝑋) → dom {⟨𝐴, 𝐵⟩} = {𝐴})
9 eqimss 3201 . . . . . . . 8 (dom {⟨𝐴, 𝐵⟩} = {𝐴} → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
108, 9syl 14 . . . . . . 7 ((𝑆𝑉𝐴𝑊𝐵𝑋) → dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴})
1110sscond 3264 . . . . . 6 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}))
12 resabs1 4920 . . . . . 6 ((V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}) → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
1311, 12syl 14 . . . . 5 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
14 dmres 4912 . . . . . . 7 dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩})
15 disj2 3470 . . . . . . . 8 (((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩}) = ∅ ↔ (V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}))
1611, 15sylibr 133 . . . . . . 7 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩}) = ∅)
1714, 16eqtrid 2215 . . . . . 6 ((𝑆𝑉𝐴𝑊𝐵𝑋) → dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅)
18 relres 4919 . . . . . . 7 Rel ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))
19 reldm0 4829 . . . . . . 7 (Rel ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) → (({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅))
2018, 19ax-mp 5 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅)
2117, 20sylibr 133 . . . . 5 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅)
2213, 21uneq12d 3282 . . . 4 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅))
23 un0 3448 . . . 4 ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅) = (𝑆 ↾ (V ∖ {𝐴}))
2422, 23eqtrdi 2219 . . 3 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))) = (𝑆 ↾ (V ∖ {𝐴})))
256, 24eqtrid 2215 . 2 ((𝑆𝑉𝐴𝑊𝐵𝑋) → (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
265, 25eqtrd 2203 1 ((𝑆𝑉𝐴𝑊𝐵𝑋) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  Vcvv 2730  cdif 3118  cun 3119  cin 3120  wss 3121  c0 3414  {csn 3583  cop 3586  dom cdm 4611  cres 4613  Rel wrel 4616  (class class class)co 5853   sSet csts 12414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sets 12423
This theorem is referenced by:  setsabsd  12455  setsslnid  12467
  Copyright terms: Public domain W3C validator