Proof of Theorem setsresg
Step | Hyp | Ref
| Expression |
1 | | opexg 4213 |
. . . . 5
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) |
2 | | setsvalg 12446 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 〈𝐴, 𝐵〉 ∈ V) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉})) |
3 | 1, 2 | sylan2 284 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ (𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋)) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉})) |
4 | 3 | 3impb 1194 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉})) |
5 | 4 | reseq1d 4890 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉}) ↾ (V ∖ {𝐴}))) |
6 | | resundir 4905 |
. . 3
⊢ (((𝑆 ↾ (V ∖ dom
{〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ↾ (V ∖ {𝐴})) ∪ ({〈𝐴, 𝐵〉} ↾ (V ∖ {𝐴}))) |
7 | | dmsnopg 5082 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝑋 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
8 | 7 | 3ad2ant3 1015 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → dom {〈𝐴, 𝐵〉} = {𝐴}) |
9 | | eqimss 3201 |
. . . . . . . 8
⊢ (dom
{〈𝐴, 𝐵〉} = {𝐴} → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
10 | 8, 9 | syl 14 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
11 | 10 | sscond 3264 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (V ∖ {𝐴}) ⊆ (V ∖ dom {〈𝐴, 𝐵〉})) |
12 | | resabs1 4920 |
. . . . . 6
⊢ ((V
∖ {𝐴}) ⊆ (V
∖ dom {〈𝐴, 𝐵〉}) → ((𝑆 ↾ (V ∖ dom
{〈𝐴, 𝐵〉})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
13 | 11, 12 | syl 14 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
14 | | dmres 4912 |
. . . . . . 7
⊢ dom
({〈𝐴, 𝐵〉} ↾ (V ∖
{𝐴})) = ((V ∖ {𝐴}) ∩ dom {〈𝐴, 𝐵〉}) |
15 | | disj2 3470 |
. . . . . . . 8
⊢ (((V
∖ {𝐴}) ∩ dom
{〈𝐴, 𝐵〉}) = ∅ ↔ (V ∖ {𝐴}) ⊆ (V ∖ dom
{〈𝐴, 𝐵〉})) |
16 | 11, 15 | sylibr 133 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((V ∖ {𝐴}) ∩ dom {〈𝐴, 𝐵〉}) = ∅) |
17 | 14, 16 | eqtrid 2215 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → dom ({〈𝐴, 𝐵〉} ↾ (V ∖ {𝐴})) = ∅) |
18 | | relres 4919 |
. . . . . . 7
⊢ Rel
({〈𝐴, 𝐵〉} ↾ (V ∖
{𝐴})) |
19 | | reldm0 4829 |
. . . . . . 7
⊢ (Rel
({〈𝐴, 𝐵〉} ↾ (V ∖
{𝐴})) → (({〈𝐴, 𝐵〉} ↾ (V ∖ {𝐴})) = ∅ ↔ dom
({〈𝐴, 𝐵〉} ↾ (V ∖
{𝐴})) =
∅)) |
20 | 18, 19 | ax-mp 5 |
. . . . . 6
⊢
(({〈𝐴, 𝐵〉} ↾ (V ∖
{𝐴})) = ∅ ↔ dom
({〈𝐴, 𝐵〉} ↾ (V ∖
{𝐴})) =
∅) |
21 | 17, 20 | sylibr 133 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ({〈𝐴, 𝐵〉} ↾ (V ∖ {𝐴})) = ∅) |
22 | 13, 21 | uneq12d 3282 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ↾ (V ∖ {𝐴})) ∪ ({〈𝐴, 𝐵〉} ↾ (V ∖ {𝐴}))) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅)) |
23 | | un0 3448 |
. . . 4
⊢ ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅) = (𝑆 ↾ (V ∖ {𝐴})) |
24 | 22, 23 | eqtrdi 2219 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ↾ (V ∖ {𝐴})) ∪ ({〈𝐴, 𝐵〉} ↾ (V ∖ {𝐴}))) = (𝑆 ↾ (V ∖ {𝐴}))) |
25 | 6, 24 | eqtrid 2215 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉}) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
26 | 5, 25 | eqtrd 2203 |
1
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |