Proof of Theorem setsresg
| Step | Hyp | Ref
| Expression |
| 1 | | opexg 4261 |
. . . . 5
⊢ ((𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ V) |
| 2 | | setsvalg 12708 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 〈𝐴, 𝐵〉 ∈ V) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉})) |
| 3 | 1, 2 | sylan2 286 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ (𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋)) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉})) |
| 4 | 3 | 3impb 1201 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉})) |
| 5 | 4 | reseq1d 4945 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉}) ↾ (V ∖ {𝐴}))) |
| 6 | | resundir 4960 |
. . 3
⊢ (((𝑆 ↾ (V ∖ dom
{〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ↾ (V ∖ {𝐴})) ∪ ({〈𝐴, 𝐵〉} ↾ (V ∖ {𝐴}))) |
| 7 | | dmsnopg 5141 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝑋 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
| 8 | 7 | 3ad2ant3 1022 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → dom {〈𝐴, 𝐵〉} = {𝐴}) |
| 9 | | eqimss 3237 |
. . . . . . . 8
⊢ (dom
{〈𝐴, 𝐵〉} = {𝐴} → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → dom {〈𝐴, 𝐵〉} ⊆ {𝐴}) |
| 11 | 10 | sscond 3300 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (V ∖ {𝐴}) ⊆ (V ∖ dom {〈𝐴, 𝐵〉})) |
| 12 | | resabs1 4975 |
. . . . . 6
⊢ ((V
∖ {𝐴}) ⊆ (V
∖ dom {〈𝐴, 𝐵〉}) → ((𝑆 ↾ (V ∖ dom
{〈𝐴, 𝐵〉})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
| 13 | 11, 12 | syl 14 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
| 14 | | dmres 4967 |
. . . . . . 7
⊢ dom
({〈𝐴, 𝐵〉} ↾ (V ∖
{𝐴})) = ((V ∖ {𝐴}) ∩ dom {〈𝐴, 𝐵〉}) |
| 15 | | disj2 3506 |
. . . . . . . 8
⊢ (((V
∖ {𝐴}) ∩ dom
{〈𝐴, 𝐵〉}) = ∅ ↔ (V ∖ {𝐴}) ⊆ (V ∖ dom
{〈𝐴, 𝐵〉})) |
| 16 | 11, 15 | sylibr 134 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((V ∖ {𝐴}) ∩ dom {〈𝐴, 𝐵〉}) = ∅) |
| 17 | 14, 16 | eqtrid 2241 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → dom ({〈𝐴, 𝐵〉} ↾ (V ∖ {𝐴})) = ∅) |
| 18 | | relres 4974 |
. . . . . . 7
⊢ Rel
({〈𝐴, 𝐵〉} ↾ (V ∖
{𝐴})) |
| 19 | | reldm0 4884 |
. . . . . . 7
⊢ (Rel
({〈𝐴, 𝐵〉} ↾ (V ∖
{𝐴})) → (({〈𝐴, 𝐵〉} ↾ (V ∖ {𝐴})) = ∅ ↔ dom
({〈𝐴, 𝐵〉} ↾ (V ∖
{𝐴})) =
∅)) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . 6
⊢
(({〈𝐴, 𝐵〉} ↾ (V ∖
{𝐴})) = ∅ ↔ dom
({〈𝐴, 𝐵〉} ↾ (V ∖
{𝐴})) =
∅) |
| 21 | 17, 20 | sylibr 134 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ({〈𝐴, 𝐵〉} ↾ (V ∖ {𝐴})) = ∅) |
| 22 | 13, 21 | uneq12d 3318 |
. . . 4
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ↾ (V ∖ {𝐴})) ∪ ({〈𝐴, 𝐵〉} ↾ (V ∖ {𝐴}))) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅)) |
| 23 | | un0 3484 |
. . . 4
⊢ ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅) = (𝑆 ↾ (V ∖ {𝐴})) |
| 24 | 22, 23 | eqtrdi 2245 |
. . 3
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ↾ (V ∖ {𝐴})) ∪ ({〈𝐴, 𝐵〉} ↾ (V ∖ {𝐴}))) = (𝑆 ↾ (V ∖ {𝐴}))) |
| 25 | 6, 24 | eqtrid 2241 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (((𝑆 ↾ (V ∖ dom {〈𝐴, 𝐵〉})) ∪ {〈𝐴, 𝐵〉}) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
| 26 | 5, 25 | eqtrd 2229 |
1
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |