Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstrd | GIF version |
Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
Ref | Expression |
---|---|
sstrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sstrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
3 | sstr 3155 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sstrid 3158 sstrdi 3159 ssdif2d 3266 tfisi 4571 funss 5217 fssxp 5365 fvmptssdm 5580 suppssfv 6057 suppssov1 6058 tposss 6225 tfrlem1 6287 tfrlemibfn 6307 tfr1onlembfn 6323 tfr1onlemubacc 6325 tfr1onlemres 6328 tfrcllembfn 6336 tfrcllemubacc 6338 tfrcllemres 6341 ecinxp 6588 undifdc 6901 sbthlem1 6934 iseqf1olemnab 10444 fiubm 10763 isumss 11354 prodssdc 11552 ennnfoneleminc 12366 strsetsid 12449 strleund 12506 ntrss 12913 neiint 12939 neiss 12944 restopnb 12975 iscnp4 13012 blssps 13221 blss 13222 xmettx 13304 tgqioo 13341 rescncf 13362 suplociccreex 13396 suplociccex 13397 dvbss 13448 dvbsssg 13449 dvfgg 13451 dvcnp2cntop 13457 dvcn 13458 dvaddxxbr 13459 dvmulxxbr 13460 dvcoapbr 13465 |
Copyright terms: Public domain | W3C validator |