![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstrd | GIF version |
Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
Ref | Expression |
---|---|
sstrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sstrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
3 | sstr 3187 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: sstrid 3190 sstrdi 3191 ssdif2d 3298 tfisi 4619 funss 5273 fssxp 5421 fvmptssdm 5642 suppssfv 6126 suppssov1 6127 tposss 6299 tfrlem1 6361 tfrlemibfn 6381 tfr1onlembfn 6397 tfr1onlemubacc 6399 tfr1onlemres 6402 tfrcllembfn 6410 tfrcllemubacc 6412 tfrcllemres 6415 ecinxp 6664 undifdc 6980 sbthlem1 7016 seqsplitg 10560 iseqf1olemnab 10572 seqf1oglem2a 10589 fiubm 10899 isumss 11534 prodssdc 11732 ennnfoneleminc 12568 strsetsid 12651 strleund 12721 strext 12723 imasaddvallemg 12898 subsubm 13055 subsubg 13267 subgintm 13268 subsubrng 13710 subsubrg 13741 lssintclm 13880 lspss 13895 lspun 13898 lsslsp 13925 ntrss 14287 neiint 14313 neiss 14318 restopnb 14349 iscnp4 14386 blssps 14595 blss 14596 xmettx 14678 tgqioo 14715 rescncf 14736 suplociccreex 14778 suplociccex 14779 dvbss 14839 dvbsssg 14840 dvfgg 14842 dvcnp2cntop 14848 dvcn 14849 dvaddxxbr 14850 dvmulxxbr 14851 dvcoapbr 14856 |
Copyright terms: Public domain | W3C validator |