Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstrd | GIF version |
Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
Ref | Expression |
---|---|
sstrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sstrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sstrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
3 | sstr 3136 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: sstrid 3139 sstrdi 3140 ssdif2d 3246 tfisi 4544 funss 5186 fssxp 5334 fvmptssdm 5549 suppssfv 6022 suppssov1 6023 tposss 6187 tfrlem1 6249 tfrlemibfn 6269 tfr1onlembfn 6285 tfr1onlemubacc 6287 tfr1onlemres 6290 tfrcllembfn 6298 tfrcllemubacc 6300 tfrcllemres 6303 ecinxp 6548 undifdc 6861 sbthlem1 6894 iseqf1olemnab 10369 isumss 11270 prodssdc 11468 ennnfoneleminc 12112 strsetsid 12183 strleund 12238 ntrss 12479 neiint 12505 neiss 12510 restopnb 12541 iscnp4 12578 blssps 12787 blss 12788 xmettx 12870 tgqioo 12907 rescncf 12928 suplociccreex 12962 suplociccex 12963 dvbss 13014 dvbsssg 13015 dvfgg 13017 dvcnp2cntop 13023 dvcn 13024 dvaddxxbr 13025 dvmulxxbr 13026 dvcoapbr 13031 |
Copyright terms: Public domain | W3C validator |