Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq1d | GIF version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sseq1d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sseq1 3170 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sseq12d 3178 eqsstrd 3183 snssg 3714 ssiun2s 3915 treq 4091 onsucsssucexmid 4509 funimass1 5273 feq1 5328 sbcfg 5344 fvmptssdm 5578 fvimacnvi 5607 nnsucsssuc 6468 ereq1 6516 elpm2r 6640 fipwssg 6952 nnnninf 7098 ctssexmid 7122 iscnp 12952 iscnp4 12971 cnntr 12978 cnconst2 12986 cnptopresti 12991 cnptoprest 12992 txbas 13011 txcnp 13024 txdis 13030 txdis1cn 13031 blssps 13180 blss 13181 ssblex 13184 blin2 13185 metss2 13251 metrest 13259 metcnp3 13264 cnopnap 13347 limccl 13381 ellimc3apf 13382 |
Copyright terms: Public domain | W3C validator |