| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sseq1d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sseq1 3207 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseq12d 3215 eqsstrd 3220 snssgOLD 3759 ssiun2s 3961 treq 4138 onsucsssucexmid 4564 funimass1 5336 feq1 5393 sbcfg 5409 fvmptssdm 5649 fvimacnvi 5679 nnsucsssuc 6559 ereq1 6608 elpm2r 6734 fipwssg 7054 nnnninf 7201 ctssexmid 7225 rspssp 14128 iscnp 14521 iscnp4 14540 cnntr 14547 cnconst2 14555 cnptopresti 14560 cnptoprest 14561 txbas 14580 txcnp 14593 txdis 14599 txdis1cn 14600 blssps 14749 blss 14750 ssblex 14753 blin2 14754 metss2 14820 metrest 14828 metcnp3 14833 cnopnap 14933 limccl 14981 ellimc3apf 14982 |
| Copyright terms: Public domain | W3C validator |