Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq1d | GIF version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sseq1d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sseq1 3165 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sseq12d 3173 eqsstrd 3178 snssg 3709 ssiun2s 3910 treq 4086 onsucsssucexmid 4504 funimass1 5265 feq1 5320 sbcfg 5336 fvmptssdm 5570 fvimacnvi 5599 nnsucsssuc 6460 ereq1 6508 elpm2r 6632 fipwssg 6944 nnnninf 7090 ctssexmid 7114 iscnp 12839 iscnp4 12858 cnntr 12865 cnconst2 12873 cnptopresti 12878 cnptoprest 12879 txbas 12898 txcnp 12911 txdis 12917 txdis1cn 12918 blssps 13067 blss 13068 ssblex 13071 blin2 13072 metss2 13138 metrest 13146 metcnp3 13151 cnopnap 13234 limccl 13268 ellimc3apf 13269 |
Copyright terms: Public domain | W3C validator |