| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sseq1d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sseq1 3247 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseq12d 3255 eqsstrd 3260 snssgOLD 3804 ssiun2s 4009 treq 4188 onsucsssucexmid 4619 funimass1 5398 feq1 5456 sbcfg 5472 fvmptssdm 5721 fvimacnvi 5751 nnsucsssuc 6646 ereq1 6695 elpm2r 6821 fipwssg 7154 nnnninf 7301 ctssexmid 7325 rspssp 14466 iscnp 14881 iscnp4 14900 cnntr 14907 cnconst2 14915 cnptopresti 14920 cnptoprest 14921 txbas 14940 txcnp 14953 txdis 14959 txdis1cn 14960 blssps 15109 blss 15110 ssblex 15113 blin2 15114 metss2 15180 metrest 15188 metcnp3 15193 cnopnap 15293 limccl 15341 ellimc3apf 15342 ausgrumgrien 15976 ausgrusgrien 15977 |
| Copyright terms: Public domain | W3C validator |