![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq1d | GIF version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sseq1d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sseq1 3202 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: sseq12d 3210 eqsstrd 3215 snssgOLD 3754 ssiun2s 3956 treq 4133 onsucsssucexmid 4559 funimass1 5331 feq1 5386 sbcfg 5402 fvmptssdm 5642 fvimacnvi 5672 nnsucsssuc 6545 ereq1 6594 elpm2r 6720 fipwssg 7038 nnnninf 7185 ctssexmid 7209 rspssp 13990 iscnp 14367 iscnp4 14386 cnntr 14393 cnconst2 14401 cnptopresti 14406 cnptoprest 14407 txbas 14426 txcnp 14439 txdis 14445 txdis1cn 14446 blssps 14595 blss 14596 ssblex 14599 blin2 14600 metss2 14666 metrest 14674 metcnp3 14679 cnopnap 14765 limccl 14813 ellimc3apf 14814 |
Copyright terms: Public domain | W3C validator |