| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sseq1d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sseq1 3217 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 |
| This theorem is referenced by: sseq12d 3225 eqsstrd 3230 snssgOLD 3771 ssiun2s 3973 treq 4152 onsucsssucexmid 4579 funimass1 5356 feq1 5414 sbcfg 5430 fvmptssdm 5671 fvimacnvi 5701 nnsucsssuc 6585 ereq1 6634 elpm2r 6760 fipwssg 7088 nnnninf 7235 ctssexmid 7259 rspssp 14300 iscnp 14715 iscnp4 14734 cnntr 14741 cnconst2 14749 cnptopresti 14754 cnptoprest 14755 txbas 14774 txcnp 14787 txdis 14793 txdis1cn 14794 blssps 14943 blss 14944 ssblex 14947 blin2 14948 metss2 15014 metrest 15022 metcnp3 15027 cnopnap 15127 limccl 15175 ellimc3apf 15176 |
| Copyright terms: Public domain | W3C validator |