| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sseq1d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sseq1 3227 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ⊆ wss 3177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 |
| This theorem is referenced by: sseq12d 3235 eqsstrd 3240 snssgOLD 3783 ssiun2s 3988 treq 4167 onsucsssucexmid 4596 funimass1 5374 feq1 5432 sbcfg 5448 fvmptssdm 5692 fvimacnvi 5722 nnsucsssuc 6608 ereq1 6657 elpm2r 6783 fipwssg 7114 nnnninf 7261 ctssexmid 7285 rspssp 14423 iscnp 14838 iscnp4 14857 cnntr 14864 cnconst2 14872 cnptopresti 14877 cnptoprest 14878 txbas 14897 txcnp 14910 txdis 14916 txdis1cn 14917 blssps 15066 blss 15067 ssblex 15070 blin2 15071 metss2 15137 metrest 15145 metcnp3 15150 cnopnap 15250 limccl 15298 ellimc3apf 15299 ausgrumgrien 15933 ausgrusgrien 15934 |
| Copyright terms: Public domain | W3C validator |