ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq1d GIF version

Theorem sseq1d 3213
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
sseq1d (𝜑 → (𝐴𝐶𝐵𝐶))

Proof of Theorem sseq1d
StepHypRef Expression
1 sseq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 sseq1 3207 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  sseq12d  3215  eqsstrd  3220  snssgOLD  3759  ssiun2s  3961  treq  4138  onsucsssucexmid  4564  funimass1  5336  feq1  5393  sbcfg  5409  fvmptssdm  5649  fvimacnvi  5679  nnsucsssuc  6559  ereq1  6608  elpm2r  6734  fipwssg  7054  nnnninf  7201  ctssexmid  7225  rspssp  14128  iscnp  14521  iscnp4  14540  cnntr  14547  cnconst2  14555  cnptopresti  14560  cnptoprest  14561  txbas  14580  txcnp  14593  txdis  14599  txdis1cn  14600  blssps  14749  blss  14750  ssblex  14753  blin2  14754  metss2  14820  metrest  14828  metcnp3  14833  cnopnap  14933  limccl  14981  ellimc3apf  14982
  Copyright terms: Public domain W3C validator