ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq2i GIF version

Theorem sseq2i 3184
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
sseq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
sseq2i (𝐶𝐴𝐶𝐵)

Proof of Theorem sseq2i
StepHypRef Expression
1 sseq1i.1 . 2 𝐴 = 𝐵
2 sseq2 3181 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144
This theorem is referenced by:  sseqtri  3191  sseqtrdi  3205  abss  3226  ssrab  3235  ssintrab  3869  iunpwss  3980  iotass  5197  dffun2  5228  ssimaex  5579  pw1fin  6912  pw1dc0el  6913  ss1o0el1o  6914  isstructim  12478  isstructr  12479  issubm  12868  grpissubg  13059  bj-ssom  14727  ss1oel2o  14782
  Copyright terms: Public domain W3C validator