| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrabdv | GIF version | ||
| Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.) |
| Ref | Expression |
|---|---|
| ssrabdv.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| ssrabdv.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) |
| Ref | Expression |
|---|---|
| ssrabdv | ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrabdv.1 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 2 | ssrabdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) | |
| 3 | 2 | ralrimiva 2570 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| 4 | ssrab 3262 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜓)) | |
| 5 | 1, 3, 4 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∀wral 2475 {crab 2479 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-in 3163 df-ss 3170 |
| This theorem is referenced by: perfectlem2 15320 |
| Copyright terms: Public domain | W3C validator |