ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrab GIF version

Theorem ssrab 3275
Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssrab (𝐵 ⊆ {𝑥𝐴𝜑} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrab
StepHypRef Expression
1 df-rab 2494 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21sseq2i 3224 . 2 (𝐵 ⊆ {𝑥𝐴𝜑} ↔ 𝐵 ⊆ {𝑥 ∣ (𝑥𝐴𝜑)})
3 ssab 3267 . 2 (𝐵 ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)))
4 dfss3 3186 . . . 4 (𝐵𝐴 ↔ ∀𝑥𝐵 𝑥𝐴)
54anbi1i 458 . . 3 ((𝐵𝐴 ∧ ∀𝑥𝐵 𝜑) ↔ (∀𝑥𝐵 𝑥𝐴 ∧ ∀𝑥𝐵 𝜑))
6 r19.26 2633 . . 3 (∀𝑥𝐵 (𝑥𝐴𝜑) ↔ (∀𝑥𝐵 𝑥𝐴 ∧ ∀𝑥𝐵 𝜑))
7 df-ral 2490 . . 3 (∀𝑥𝐵 (𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)))
85, 6, 73bitr2ri 209 . 2 (∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
92, 3, 83bitri 206 1 (𝐵 ⊆ {𝑥𝐴𝜑} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371  wcel 2177  {cab 2192  wral 2485  {crab 2489  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-in 3176  df-ss 3183
This theorem is referenced by:  ssrabdv  3276  frind  4406  epttop  14632
  Copyright terms: Public domain W3C validator