Proof of Theorem wl-sbalnae
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sb4b 2480 | . . . . 5
⊢ (¬
∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑))) | 
| 2 |  | nfnae 2439 | . . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 | 
| 3 |  | nfnae 2439 | . . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑧 | 
| 4 | 2, 3 | nfan 1899 | . . . . . 6
⊢
Ⅎ𝑦(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) | 
| 5 |  | nfeqf 2386 | . . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦 = 𝑧) | 
| 6 |  | 19.21t 2206 | . . . . . . . 8
⊢
(Ⅎ𝑥 𝑦 = 𝑧 → (∀𝑥(𝑦 = 𝑧 → 𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑))) | 
| 7 | 6 | bicomd 223 | . . . . . . 7
⊢
(Ⅎ𝑥 𝑦 = 𝑧 → ((𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑥(𝑦 = 𝑧 → 𝜑))) | 
| 8 | 5, 7 | syl 17 | . . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ((𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑥(𝑦 = 𝑧 → 𝜑))) | 
| 9 | 4, 8 | albid 2222 | . . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑))) | 
| 10 | 1, 9 | sylan9bbr 510 | . . . 4
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑))) | 
| 11 |  | nfnae 2439 | . . . . . . 7
⊢
Ⅎ𝑥 ¬
∀𝑦 𝑦 = 𝑧 | 
| 12 |  | sb4b 2480 | . . . . . . 7
⊢ (¬
∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜑))) | 
| 13 | 11, 12 | albid 2222 | . . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑))) | 
| 14 |  | alcom 2159 | . . . . . 6
⊢
(∀𝑥∀𝑦(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑)) | 
| 15 | 13, 14 | bitrdi 287 | . . . . 5
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑))) | 
| 16 | 15 | adantl 481 | . . . 4
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦∀𝑥(𝑦 = 𝑧 → 𝜑))) | 
| 17 | 10, 16 | bitr4d 282 | . . 3
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | 
| 18 | 17 | ex 412 | . 2
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))) | 
| 19 |  | sbequ12 2251 | . . . 4
⊢ (𝑦 = 𝑧 → (∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑)) | 
| 20 | 19 | sps 2185 | . . 3
⊢
(∀𝑦 𝑦 = 𝑧 → (∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑)) | 
| 21 |  | sbequ12 2251 | . . . . 5
⊢ (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑)) | 
| 22 | 21 | sps 2185 | . . . 4
⊢
(∀𝑦 𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑)) | 
| 23 | 22 | dral2 2443 | . . 3
⊢
(∀𝑦 𝑦 = 𝑧 → (∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | 
| 24 | 20, 23 | bitr3d 281 | . 2
⊢
(∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | 
| 25 | 18, 24 | pm2.61d2 181 | 1
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |