Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sbalnae Structured version   Visualization version   GIF version

Theorem wl-sbalnae 34956
 Description: A theorem used in elimination of disjoint variable restrictions by replacing them with distinctors. (Contributed by Wolf Lammen, 25-Jul-2019.)
Assertion
Ref Expression
wl-sbalnae ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))

Proof of Theorem wl-sbalnae
StepHypRef Expression
1 sb4b 2491 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)))
2 nfnae 2448 . . . . . . 7 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
3 nfnae 2448 . . . . . . 7 𝑦 ¬ ∀𝑥 𝑥 = 𝑧
42, 3nfan 1900 . . . . . 6 𝑦(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
5 nfeqf 2391 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦 = 𝑧)
6 19.21t 2205 . . . . . . . 8 (Ⅎ𝑥 𝑦 = 𝑧 → (∀𝑥(𝑦 = 𝑧𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑)))
76bicomd 226 . . . . . . 7 (Ⅎ𝑥 𝑦 = 𝑧 → ((𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑥(𝑦 = 𝑧𝜑)))
85, 7syl 17 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ((𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑥(𝑦 = 𝑧𝜑)))
94, 8albid 2223 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑)))
101, 9sylan9bbr 514 . . . 4 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑)))
11 nfnae 2448 . . . . . . 7 𝑥 ¬ ∀𝑦 𝑦 = 𝑧
12 sb4b 2491 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧𝜑)))
1311, 12albid 2223 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥𝑦(𝑦 = 𝑧𝜑)))
14 alcom 2161 . . . . . 6 (∀𝑥𝑦(𝑦 = 𝑧𝜑) ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑))
1513, 14syl6bb 290 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑)))
1615adantl 485 . . . 4 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑)))
1710, 16bitr4d 285 . . 3 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
1817ex 416 . 2 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)))
19 sbequ12 2252 . . . 4 (𝑦 = 𝑧 → (∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑))
2019sps 2183 . . 3 (∀𝑦 𝑦 = 𝑧 → (∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑))
21 sbequ12 2252 . . . . 5 (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
2221sps 2183 . . . 4 (∀𝑦 𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
2322dral2 2452 . . 3 (∀𝑦 𝑦 = 𝑧 → (∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
2420, 23bitr3d 284 . 2 (∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
2518, 24pm2.61d2 184 1 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536  Ⅎwnf 1785  [wsb 2069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2143  ax-11 2159  ax-12 2176  ax-13 2382 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070 This theorem is referenced by:  wl-sbal1  34957  wl-sbal2  34958
 Copyright terms: Public domain W3C validator