| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exdistrf | Structured version Visualization version GIF version | ||
| Description: Distribution of existential quantifiers, with a bound-variable hypothesis saying that 𝑦 is not free in 𝜑, but 𝑥 can be free in 𝜑 (and there is no distinct variable condition on 𝑥 and 𝑦). (Contributed by Mario Carneiro, 20-Mar-2013.) (Proof shortened by Wolf Lammen, 14-May-2018.) Usage of this theorem is discouraged because it depends on ax-13 2377. Use exdistr 1954 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| exdistrf.1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑) |
| Ref | Expression |
|---|---|
| exdistrf | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 2150 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝜑 ∧ ∃𝑦𝜓) | |
| 2 | 19.8a 2181 | . . . . . 6 ⊢ (𝜓 → ∃𝑦𝜓) | |
| 3 | 2 | anim2i 617 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ ∃𝑦𝜓)) |
| 4 | 3 | eximi 1835 | . . . 4 ⊢ (∃𝑦(𝜑 ∧ 𝜓) → ∃𝑦(𝜑 ∧ ∃𝑦𝜓)) |
| 5 | biidd 262 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓))) | |
| 6 | 5 | drex1 2446 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ ∃𝑦(𝜑 ∧ ∃𝑦𝜓))) |
| 7 | 4, 6 | imbitrrid 246 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑦(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))) |
| 8 | 19.40 1886 | . . . 4 ⊢ (∃𝑦(𝜑 ∧ 𝜓) → (∃𝑦𝜑 ∧ ∃𝑦𝜓)) | |
| 9 | exdistrf.1 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑) | |
| 10 | 9 | 19.9d 2203 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑦𝜑 → 𝜑)) |
| 11 | 10 | anim1d 611 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ((∃𝑦𝜑 ∧ ∃𝑦𝜓) → (𝜑 ∧ ∃𝑦𝜓))) |
| 12 | 19.8a 2181 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑦𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
| 13 | 8, 11, 12 | syl56 36 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑦(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓))) |
| 14 | 7, 13 | pm2.61i 182 | . 2 ⊢ (∃𝑦(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
| 15 | 1, 14 | exlimi 2217 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: oprabid 7463 |
| Copyright terms: Public domain | W3C validator |