MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2exeu Structured version   Visualization version   GIF version

Theorem 2exeu 2731
Description: Double existential uniqueness implies double unique existential quantification. The converse does not hold. Usage of this theorem is discouraged because it depends on ax-13 2390. Use the weaker 2exeuv 2717 when possible. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
2exeu ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥∃!𝑦𝜑)

Proof of Theorem 2exeu
StepHypRef Expression
1 eumo 2663 . . . 4 (∃!𝑥𝑦𝜑 → ∃*𝑥𝑦𝜑)
2 euex 2662 . . . . 5 (∃!𝑦𝜑 → ∃𝑦𝜑)
32moimi 2627 . . . 4 (∃*𝑥𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)
41, 3syl 17 . . 3 (∃!𝑥𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)
5 2euex 2726 . . 3 (∃!𝑦𝑥𝜑 → ∃𝑥∃!𝑦𝜑)
64, 5anim12ci 615 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑))
7 df-eu 2654 . 2 (∃!𝑥∃!𝑦𝜑 ↔ (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑))
86, 7sylibr 236 1 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥∃!𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wex 1780  ∃*wmo 2620  ∃!weu 2653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-11 2161  ax-12 2177  ax-13 2390
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-mo 2622  df-eu 2654
This theorem is referenced by:  2eu1  2735  2eu2  2737  2eu3  2738
  Copyright terms: Public domain W3C validator