Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exeu | Structured version Visualization version GIF version |
Description: Double existential uniqueness implies double unique existential quantification. The converse does not hold. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker 2exeuv 2636 when possible. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2exeu | ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → ∃!𝑥∃!𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2580 | . . . 4 ⊢ (∃!𝑥∃𝑦𝜑 → ∃*𝑥∃𝑦𝜑) | |
2 | euex 2579 | . . . . 5 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
3 | 2 | moimi 2546 | . . . 4 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥∃!𝑦𝜑) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (∃!𝑥∃𝑦𝜑 → ∃*𝑥∃!𝑦𝜑) |
5 | 2euex 2645 | . . 3 ⊢ (∃!𝑦∃𝑥𝜑 → ∃𝑥∃!𝑦𝜑) | |
6 | 4, 5 | anim12ci 617 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑)) |
7 | df-eu 2571 | . 2 ⊢ (∃!𝑥∃!𝑦𝜑 ↔ (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑)) | |
8 | 6, 7 | sylibr 237 | 1 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → ∃!𝑥∃!𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∃wex 1786 ∃*wmo 2539 ∃!weu 2570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-10 2145 ax-11 2162 ax-12 2179 ax-13 2373 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-mo 2541 df-eu 2571 |
This theorem is referenced by: 2eu1 2654 2eu2 2656 2eu3 2657 |
Copyright terms: Public domain | W3C validator |