|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2exeu | Structured version Visualization version GIF version | ||
| Description: Double existential uniqueness implies double unique existential quantification. The converse does not hold. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker 2exeuv 2632 when possible. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| 2exeu | ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → ∃!𝑥∃!𝑦𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eumo 2578 | . . . 4 ⊢ (∃!𝑥∃𝑦𝜑 → ∃*𝑥∃𝑦𝜑) | |
| 2 | euex 2577 | . . . . 5 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
| 3 | 2 | moimi 2545 | . . . 4 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥∃!𝑦𝜑) | 
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (∃!𝑥∃𝑦𝜑 → ∃*𝑥∃!𝑦𝜑) | 
| 5 | 2euex 2641 | . . 3 ⊢ (∃!𝑦∃𝑥𝜑 → ∃𝑥∃!𝑦𝜑) | |
| 6 | 4, 5 | anim12ci 614 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑)) | 
| 7 | df-eu 2569 | . 2 ⊢ (∃!𝑥∃!𝑦𝜑 ↔ (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑)) | |
| 8 | 6, 7 | sylibr 234 | 1 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → ∃!𝑥∃!𝑦𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∃*wmo 2538 ∃!weu 2568 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 | 
| This theorem is referenced by: 2eu1 2651 2eu2 2653 2eu3 2654 | 
| Copyright terms: Public domain | W3C validator |