MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2exeu Structured version   Visualization version   GIF version

Theorem 2exeu 2642
Description: Double existential uniqueness implies double unique existential quantification. The converse does not hold. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker 2exeuv 2628 when possible. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
2exeu ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥∃!𝑦𝜑)

Proof of Theorem 2exeu
StepHypRef Expression
1 eumo 2572 . . . 4 (∃!𝑥𝑦𝜑 → ∃*𝑥𝑦𝜑)
2 euex 2571 . . . . 5 (∃!𝑦𝜑 → ∃𝑦𝜑)
32moimi 2539 . . . 4 (∃*𝑥𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)
41, 3syl 17 . . 3 (∃!𝑥𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)
5 2euex 2637 . . 3 (∃!𝑦𝑥𝜑 → ∃𝑥∃!𝑦𝜑)
64, 5anim12ci 614 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑))
7 df-eu 2563 . 2 (∃!𝑥∃!𝑦𝜑 ↔ (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑))
86, 7sylibr 233 1 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥∃!𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1781  ∃*wmo 2532  ∃!weu 2562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2371
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-mo 2534  df-eu 2563
This theorem is referenced by:  2eu1  2646  2eu2  2648  2eu3  2649
  Copyright terms: Public domain W3C validator