|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2eu8 | Structured version Visualization version GIF version | ||
| Description: Two equivalent expressions for double existential uniqueness. Curiously, we can put ∃! on either of the internal conjuncts but not both. We can also commute ∃!𝑥∃!𝑦 using 2eu7 2658. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by NM, 20-Feb-2005.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| 2eu8 | ⊢ (∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2eu2 2653 | . . 3 ⊢ (∃!𝑥∃𝑦𝜑 → (∃!𝑦∃!𝑥𝜑 ↔ ∃!𝑦∃𝑥𝜑)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ (∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑)) | 
| 3 | nfeu1 2588 | . . . . 5 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
| 4 | 3 | nfeu 2594 | . . . 4 ⊢ Ⅎ𝑥∃!𝑦∃!𝑥𝜑 | 
| 5 | 4 | euan 2621 | . . 3 ⊢ (∃!𝑥(∃!𝑦∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦∃!𝑥𝜑 ∧ ∃!𝑥∃𝑦𝜑)) | 
| 6 | ancom 460 | . . . . . 6 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃𝑦𝜑 ∧ ∃!𝑥𝜑)) | |
| 7 | 6 | eubii 2585 | . . . . 5 ⊢ (∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑦(∃𝑦𝜑 ∧ ∃!𝑥𝜑)) | 
| 8 | nfe1 2150 | . . . . . 6 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
| 9 | 8 | euan 2621 | . . . . 5 ⊢ (∃!𝑦(∃𝑦𝜑 ∧ ∃!𝑥𝜑) ↔ (∃𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑)) | 
| 10 | ancom 460 | . . . . 5 ⊢ ((∃𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ (∃!𝑦∃!𝑥𝜑 ∧ ∃𝑦𝜑)) | |
| 11 | 7, 9, 10 | 3bitri 297 | . . . 4 ⊢ (∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦∃!𝑥𝜑 ∧ ∃𝑦𝜑)) | 
| 12 | 11 | eubii 2585 | . . 3 ⊢ (∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥(∃!𝑦∃!𝑥𝜑 ∧ ∃𝑦𝜑)) | 
| 13 | ancom 460 | . . 3 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ (∃!𝑦∃!𝑥𝜑 ∧ ∃!𝑥∃𝑦𝜑)) | |
| 14 | 5, 12, 13 | 3bitr4ri 304 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑)) | 
| 15 | 2eu7 2658 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑)) | |
| 16 | 2, 14, 15 | 3bitr3ri 302 | 1 ⊢ (∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∃!weu 2568 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |