Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2eu8 | Structured version Visualization version GIF version |
Description: Two equivalent expressions for double existential uniqueness. Curiously, we can put ∃! on either of the internal conjuncts but not both. We can also commute ∃!𝑥∃!𝑦 using 2eu7 2659. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 20-Feb-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2eu8 | ⊢ (∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2eu2 2654 | . . 3 ⊢ (∃!𝑥∃𝑦𝜑 → (∃!𝑦∃!𝑥𝜑 ↔ ∃!𝑦∃𝑥𝜑)) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ (∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑)) |
3 | nfeu1 2588 | . . . . 5 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
4 | 3 | nfeu 2594 | . . . 4 ⊢ Ⅎ𝑥∃!𝑦∃!𝑥𝜑 |
5 | 4 | euan 2623 | . . 3 ⊢ (∃!𝑥(∃!𝑦∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦∃!𝑥𝜑 ∧ ∃!𝑥∃𝑦𝜑)) |
6 | ancom 460 | . . . . . 6 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃𝑦𝜑 ∧ ∃!𝑥𝜑)) | |
7 | 6 | eubii 2585 | . . . . 5 ⊢ (∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑦(∃𝑦𝜑 ∧ ∃!𝑥𝜑)) |
8 | nfe1 2149 | . . . . . 6 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
9 | 8 | euan 2623 | . . . . 5 ⊢ (∃!𝑦(∃𝑦𝜑 ∧ ∃!𝑥𝜑) ↔ (∃𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑)) |
10 | ancom 460 | . . . . 5 ⊢ ((∃𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ (∃!𝑦∃!𝑥𝜑 ∧ ∃𝑦𝜑)) | |
11 | 7, 9, 10 | 3bitri 296 | . . . 4 ⊢ (∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦∃!𝑥𝜑 ∧ ∃𝑦𝜑)) |
12 | 11 | eubii 2585 | . . 3 ⊢ (∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥(∃!𝑦∃!𝑥𝜑 ∧ ∃𝑦𝜑)) |
13 | ancom 460 | . . 3 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ (∃!𝑦∃!𝑥𝜑 ∧ ∃!𝑥∃𝑦𝜑)) | |
14 | 5, 12, 13 | 3bitr4ri 303 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑)) |
15 | 2eu7 2659 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑)) | |
16 | 2, 14, 15 | 3bitr3ri 301 | 1 ⊢ (∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-mo 2540 df-eu 2569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |