MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu7 Structured version   Visualization version   GIF version

Theorem 2eu7 2659
Description: Two equivalent expressions for double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 19-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
2eu7 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑))

Proof of Theorem 2eu7
StepHypRef Expression
1 nfe1 2147 . . . 4 𝑥𝑥𝜑
21nfeu 2594 . . 3 𝑥∃!𝑦𝑥𝜑
32euan 2623 . 2 (∃!𝑥(∃!𝑦𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦𝑥𝜑 ∧ ∃!𝑥𝑦𝜑))
4 ancom 461 . . . . 5 ((∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃𝑦𝜑 ∧ ∃𝑥𝜑))
54eubii 2585 . . . 4 (∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑦(∃𝑦𝜑 ∧ ∃𝑥𝜑))
6 nfe1 2147 . . . . 5 𝑦𝑦𝜑
76euan 2623 . . . 4 (∃!𝑦(∃𝑦𝜑 ∧ ∃𝑥𝜑) ↔ (∃𝑦𝜑 ∧ ∃!𝑦𝑥𝜑))
8 ancom 461 . . . 4 ((∃𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ (∃!𝑦𝑥𝜑 ∧ ∃𝑦𝜑))
95, 7, 83bitri 297 . . 3 (∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦𝑥𝜑 ∧ ∃𝑦𝜑))
109eubii 2585 . 2 (∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥(∃!𝑦𝑥𝜑 ∧ ∃𝑦𝜑))
11 ancom 461 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ (∃!𝑦𝑥𝜑 ∧ ∃!𝑥𝑦𝜑))
123, 10, 113bitr4ri 304 1 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1782  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540  df-eu 2569
This theorem is referenced by:  2eu8  2660
  Copyright terms: Public domain W3C validator