|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2eu7 | Structured version Visualization version GIF version | ||
| Description: Two equivalent expressions for double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 19-Feb-2005.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| 2eu7 | ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfe1 2149 | . . . 4 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
| 2 | 1 | nfeu 2593 | . . 3 ⊢ Ⅎ𝑥∃!𝑦∃𝑥𝜑 | 
| 3 | 2 | euan 2620 | . 2 ⊢ (∃!𝑥(∃!𝑦∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦∃𝑥𝜑 ∧ ∃!𝑥∃𝑦𝜑)) | 
| 4 | ancom 460 | . . . . 5 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃𝑦𝜑 ∧ ∃𝑥𝜑)) | |
| 5 | 4 | eubii 2584 | . . . 4 ⊢ (∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑦(∃𝑦𝜑 ∧ ∃𝑥𝜑)) | 
| 6 | nfe1 2149 | . . . . 5 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
| 7 | 6 | euan 2620 | . . . 4 ⊢ (∃!𝑦(∃𝑦𝜑 ∧ ∃𝑥𝜑) ↔ (∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑)) | 
| 8 | ancom 460 | . . . 4 ⊢ ((∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃!𝑦∃𝑥𝜑 ∧ ∃𝑦𝜑)) | |
| 9 | 5, 7, 8 | 3bitri 297 | . . 3 ⊢ (∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦∃𝑥𝜑 ∧ ∃𝑦𝜑)) | 
| 10 | 9 | eubii 2584 | . 2 ⊢ (∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥(∃!𝑦∃𝑥𝜑 ∧ ∃𝑦𝜑)) | 
| 11 | ancom 460 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃!𝑦∃𝑥𝜑 ∧ ∃!𝑥∃𝑦𝜑)) | |
| 12 | 3, 10, 11 | 3bitr4ri 304 | 1 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1778 ∃!weu 2567 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2376 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-mo 2539 df-eu 2568 | 
| This theorem is referenced by: 2eu8 2658 | 
| Copyright terms: Public domain | W3C validator |