Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2eu7 | Structured version Visualization version GIF version |
Description: Two equivalent expressions for double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 19-Feb-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2eu7 | ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 2147 | . . . 4 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
2 | 1 | nfeu 2594 | . . 3 ⊢ Ⅎ𝑥∃!𝑦∃𝑥𝜑 |
3 | 2 | euan 2623 | . 2 ⊢ (∃!𝑥(∃!𝑦∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦∃𝑥𝜑 ∧ ∃!𝑥∃𝑦𝜑)) |
4 | ancom 461 | . . . . 5 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃𝑦𝜑 ∧ ∃𝑥𝜑)) | |
5 | 4 | eubii 2585 | . . . 4 ⊢ (∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑦(∃𝑦𝜑 ∧ ∃𝑥𝜑)) |
6 | nfe1 2147 | . . . . 5 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
7 | 6 | euan 2623 | . . . 4 ⊢ (∃!𝑦(∃𝑦𝜑 ∧ ∃𝑥𝜑) ↔ (∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑)) |
8 | ancom 461 | . . . 4 ⊢ ((∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃!𝑦∃𝑥𝜑 ∧ ∃𝑦𝜑)) | |
9 | 5, 7, 8 | 3bitri 297 | . . 3 ⊢ (∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ (∃!𝑦∃𝑥𝜑 ∧ ∃𝑦𝜑)) |
10 | 9 | eubii 2585 | . 2 ⊢ (∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥(∃!𝑦∃𝑥𝜑 ∧ ∃𝑦𝜑)) |
11 | ancom 461 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃!𝑦∃𝑥𝜑 ∧ ∃!𝑥∃𝑦𝜑)) | |
12 | 3, 10, 11 | 3bitr4ri 304 | 1 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-mo 2540 df-eu 2569 |
This theorem is referenced by: 2eu8 2660 |
Copyright terms: Public domain | W3C validator |