MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2exeuv Structured version   Visualization version   GIF version

Theorem 2exeuv 2634
Description: Double existential uniqueness implies double unique existential quantification. Version of 2exeu 2648 with 𝑥 and 𝑦 distinct, but not requiring ax-13 2372. (Contributed by NM, 3-Dec-2001.) (Revised by Wolf Lammen, 2-Oct-2023.)
Assertion
Ref Expression
2exeuv ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥∃!𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2exeuv
StepHypRef Expression
1 eumo 2578 . . . 4 (∃!𝑥𝑦𝜑 → ∃*𝑥𝑦𝜑)
2 euex 2577 . . . . 5 (∃!𝑦𝜑 → ∃𝑦𝜑)
32moimi 2545 . . . 4 (∃*𝑥𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)
41, 3syl 17 . . 3 (∃!𝑥𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)
5 2euexv 2633 . . 3 (∃!𝑦𝑥𝜑 → ∃𝑥∃!𝑦𝜑)
64, 5anim12ci 613 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑))
7 df-eu 2569 . 2 (∃!𝑥∃!𝑦𝜑 ↔ (∃𝑥∃!𝑦𝜑 ∧ ∃*𝑥∃!𝑦𝜑))
86, 7sylibr 233 1 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥∃!𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  ∃*wmo 2538  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-mo 2540  df-eu 2569
This theorem is referenced by:  2eu1v  2653
  Copyright terms: Public domain W3C validator