| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2euexv | Structured version Visualization version GIF version | ||
| Description: Double quantification with existential uniqueness. Version of 2euex 2641 with 𝑥 and 𝑦 distinct, but not requiring ax-13 2377. (Contributed by NM, 3-Dec-2001.) (Revised by Wolf Lammen, 2-Oct-2023.) |
| Ref | Expression |
|---|---|
| 2euexv | ⊢ (∃!𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2569 | . 2 ⊢ (∃!𝑥∃𝑦𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑)) | |
| 2 | excom 2163 | . . . 4 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) | |
| 3 | nfe1 2151 | . . . . . 6 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
| 4 | 3 | nfmov 2560 | . . . . 5 ⊢ Ⅎ𝑦∃*𝑥∃𝑦𝜑 |
| 5 | 19.8a 2182 | . . . . . . 7 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 6 | 5 | moimi 2545 | . . . . . 6 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥𝜑) |
| 7 | moeu 2583 | . . . . . 6 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 8 | 6, 7 | sylib 218 | . . . . 5 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| 9 | 4, 8 | eximd 2217 | . . . 4 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑦∃𝑥𝜑 → ∃𝑦∃!𝑥𝜑)) |
| 10 | 2, 9 | biimtrid 242 | . . 3 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑)) |
| 11 | 10 | impcom 407 | . 2 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑) → ∃𝑦∃!𝑥𝜑) |
| 12 | 1, 11 | sylbi 217 | 1 ⊢ (∃!𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∃*wmo 2538 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: 2exeuv 2632 |
| Copyright terms: Public domain | W3C validator |