![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2euexv | Structured version Visualization version GIF version |
Description: Double quantification with existential uniqueness. Version of 2euex 2636 with 𝑥 and 𝑦 distinct, but not requiring ax-13 2370. (Contributed by NM, 3-Dec-2001.) (Revised by Wolf Lammen, 2-Oct-2023.) |
Ref | Expression |
---|---|
2euexv | ⊢ (∃!𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2562 | . 2 ⊢ (∃!𝑥∃𝑦𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑)) | |
2 | excom 2161 | . . . 4 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) | |
3 | nfe1 2146 | . . . . . 6 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
4 | 3 | nfmov 2553 | . . . . 5 ⊢ Ⅎ𝑦∃*𝑥∃𝑦𝜑 |
5 | 19.8a 2173 | . . . . . . 7 ⊢ (𝜑 → ∃𝑦𝜑) | |
6 | 5 | moimi 2538 | . . . . . 6 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥𝜑) |
7 | moeu 2576 | . . . . . 6 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
8 | 6, 7 | sylib 217 | . . . . 5 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
9 | 4, 8 | eximd 2208 | . . . 4 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑦∃𝑥𝜑 → ∃𝑦∃!𝑥𝜑)) |
10 | 2, 9 | biimtrid 241 | . . 3 ⊢ (∃*𝑥∃𝑦𝜑 → (∃𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑)) |
11 | 10 | impcom 407 | . 2 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑) → ∃𝑦∃!𝑥𝜑) |
12 | 1, 11 | sylbi 216 | 1 ⊢ (∃!𝑥∃𝑦𝜑 → ∃𝑦∃!𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∃*wmo 2531 ∃!weu 2561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-11 2153 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-mo 2533 df-eu 2562 |
This theorem is referenced by: 2exeuv 2627 |
Copyright terms: Public domain | W3C validator |