MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2euexv Structured version   Visualization version   GIF version

Theorem 2euexv 2629
Description: Double quantification with existential uniqueness. Version of 2euex 2639 with 𝑥 and 𝑦 distinct, but not requiring ax-13 2375. (Contributed by NM, 3-Dec-2001.) (Revised by Wolf Lammen, 2-Oct-2023.)
Assertion
Ref Expression
2euexv (∃!𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2euexv
StepHypRef Expression
1 df-eu 2567 . 2 (∃!𝑥𝑦𝜑 ↔ (∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑))
2 excom 2160 . . . 4 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
3 nfe1 2148 . . . . . 6 𝑦𝑦𝜑
43nfmov 2558 . . . . 5 𝑦∃*𝑥𝑦𝜑
5 19.8a 2179 . . . . . . 7 (𝜑 → ∃𝑦𝜑)
65moimi 2543 . . . . . 6 (∃*𝑥𝑦𝜑 → ∃*𝑥𝜑)
7 moeu 2581 . . . . . 6 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
86, 7sylib 218 . . . . 5 (∃*𝑥𝑦𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
94, 8eximd 2214 . . . 4 (∃*𝑥𝑦𝜑 → (∃𝑦𝑥𝜑 → ∃𝑦∃!𝑥𝜑))
102, 9biimtrid 242 . . 3 (∃*𝑥𝑦𝜑 → (∃𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑))
1110impcom 407 . 2 ((∃𝑥𝑦𝜑 ∧ ∃*𝑥𝑦𝜑) → ∃𝑦∃!𝑥𝜑)
121, 11sylbi 217 1 (∃!𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1776  ∃*wmo 2536  ∃!weu 2566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-10 2139  ax-11 2155  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-mo 2538  df-eu 2567
This theorem is referenced by:  2exeuv  2630
  Copyright terms: Public domain W3C validator