![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iindif2 | Structured version Visualization version GIF version |
Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use uniiun 4848 to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
iindif2 | ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.28zv 4329 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶))) | |
2 | eldif 3839 | . . . . . 6 ⊢ (𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
3 | 2 | bicomi 216 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ 𝑦 ∈ (𝐵 ∖ 𝐶)) |
4 | 3 | ralbii 3115 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) |
5 | ralnex 3183 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
6 | eliun 4796 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
7 | 5, 6 | xchbinxr 327 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
8 | 7 | anbi2i 613 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) |
9 | 1, 4, 8 | 3bitr3g 305 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶))) |
10 | eliin 4797 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶))) | |
11 | 10 | elv 3420 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) |
12 | eldif 3839 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
13 | 9, 11, 12 | 3bitr4g 306 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ 𝑦 ∈ (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶))) |
14 | 13 | eqrdv 2776 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ∀wral 3088 ∃wrex 3089 Vcvv 3415 ∖ cdif 3826 ∅c0 4178 ∪ ciun 4792 ∩ ciin 4793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-v 3417 df-dif 3832 df-nul 4179 df-iun 4794 df-iin 4795 |
This theorem is referenced by: iinvdif 4868 iincld 21351 clsval2 21362 mretopd 21404 hauscmplem 21718 cmpfi 21720 sigapildsyslem 31071 saliincl 42047 |
Copyright terms: Public domain | W3C validator |