MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iindif2 Structured version   Visualization version   GIF version

Theorem iindif2 5044
Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use uniiun 5025 to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
iindif2 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iindif2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.28zv 4467 . . . 4 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ∀𝑥𝐴 ¬ 𝑦𝐶)))
2 eldif 3927 . . . . . 6 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝐶))
32bicomi 224 . . . . 5 ((𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ 𝑦 ∈ (𝐵𝐶))
43ralbii 3076 . . . 4 (∀𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
5 ralnex 3056 . . . . . 6 (∀𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ ∃𝑥𝐴 𝑦𝐶)
6 eliun 4962 . . . . . 6 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
75, 6xchbinxr 335 . . . . 5 (∀𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ 𝑦 𝑥𝐴 𝐶)
87anbi2i 623 . . . 4 ((𝑦𝐵 ∧ ∀𝑥𝐴 ¬ 𝑦𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
91, 4, 83bitr3g 313 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶)))
10 eliin 4963 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
1110elv 3455 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
12 eldif 3927 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶))
139, 11, 123bitr4g 314 . 2 (𝐴 ≠ ∅ → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ (𝐵 𝑥𝐴 𝐶)))
1413eqrdv 2728 1 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  c0 4299   ciun 4958   ciin 4959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-v 3452  df-dif 3920  df-nul 4300  df-iun 4960  df-iin 4961
This theorem is referenced by:  iinvdif  5047  iincld  22933  clsval2  22944  mretopd  22986  hauscmplem  23300  cmpfi  23302  sigapildsyslem  34158
  Copyright terms: Public domain W3C validator