Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iindif2 | Structured version Visualization version GIF version |
Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use uniiun 4984 to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
iindif2 | ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.28zv 4428 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶))) | |
2 | eldif 3893 | . . . . . 6 ⊢ (𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
3 | 2 | bicomi 223 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ 𝑦 ∈ (𝐵 ∖ 𝐶)) |
4 | 3 | ralbii 3090 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) |
5 | ralnex 3163 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
6 | eliun 4925 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
7 | 5, 6 | xchbinxr 334 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
8 | 7 | anbi2i 622 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) |
9 | 1, 4, 8 | 3bitr3g 312 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶))) |
10 | eliin 4926 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶))) | |
11 | 10 | elv 3428 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) |
12 | eldif 3893 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
13 | 9, 11, 12 | 3bitr4g 313 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ 𝑦 ∈ (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶))) |
14 | 13 | eqrdv 2736 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 ∅c0 4253 ∪ ciun 4921 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-nul 4254 df-iun 4923 df-iin 4924 |
This theorem is referenced by: iinvdif 5005 iincld 22098 clsval2 22109 mretopd 22151 hauscmplem 22465 cmpfi 22467 sigapildsyslem 32029 saliincl 43756 |
Copyright terms: Public domain | W3C validator |