MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpar Structured version   Visualization version   GIF version

Theorem fpar 8121
Description: Merge two functions in parallel. Use as the second argument of a composition with a binary operation to build compound functions such as (𝑥 ∈ (0[,)+∞), 𝑦 ∈ ℝ ↦ ((√‘𝑥) + (sin‘𝑦))), see also ex-fpar 30364. (Contributed by NM, 17-Sep-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Hypothesis
Ref Expression
fpar.1 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
Assertion
Ref Expression
fpar ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)

Proof of Theorem fpar
StepHypRef Expression
1 fparlem3 8119 . . 3 (𝐹 Fn 𝐴 → ((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) = 𝑥𝐴 (({𝑥} × V) × ({(𝐹𝑥)} × V)))
2 fparlem4 8120 . . 3 (𝐺 Fn 𝐵 → ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))) = 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})))
31, 2ineqan12d 4212 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V))))) = ( 𝑥𝐴 (({𝑥} × V) × ({(𝐹𝑥)} × V)) ∩ 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)}))))
4 fpar.1 . 2 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
5 opex 5466 . . . 4 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V
65dfmpo 8107 . . 3 (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, ⟨(𝐹𝑥), (𝐺𝑦)⟩⟩}
7 inxp 5834 . . . . . . . 8 ((({𝑥} × V) × ({(𝐹𝑥)} × V)) ∩ ((V × {𝑦}) × (V × {(𝐺𝑦)}))) = ((({𝑥} × V) ∩ (V × {𝑦})) × (({(𝐹𝑥)} × V) ∩ (V × {(𝐺𝑦)})))
8 inxp 5834 . . . . . . . . . 10 (({𝑥} × V) ∩ (V × {𝑦})) = (({𝑥} ∩ V) × (V ∩ {𝑦}))
9 inv1 4396 . . . . . . . . . . 11 ({𝑥} ∩ V) = {𝑥}
10 incom 4199 . . . . . . . . . . . 12 (V ∩ {𝑦}) = ({𝑦} ∩ V)
11 inv1 4396 . . . . . . . . . . . 12 ({𝑦} ∩ V) = {𝑦}
1210, 11eqtri 2753 . . . . . . . . . . 11 (V ∩ {𝑦}) = {𝑦}
139, 12xpeq12i 5706 . . . . . . . . . 10 (({𝑥} ∩ V) × (V ∩ {𝑦})) = ({𝑥} × {𝑦})
14 vex 3465 . . . . . . . . . . 11 𝑥 ∈ V
15 vex 3465 . . . . . . . . . . 11 𝑦 ∈ V
1614, 15xpsn 7150 . . . . . . . . . 10 ({𝑥} × {𝑦}) = {⟨𝑥, 𝑦⟩}
178, 13, 163eqtri 2757 . . . . . . . . 9 (({𝑥} × V) ∩ (V × {𝑦})) = {⟨𝑥, 𝑦⟩}
18 inxp 5834 . . . . . . . . . 10 (({(𝐹𝑥)} × V) ∩ (V × {(𝐺𝑦)})) = (({(𝐹𝑥)} ∩ V) × (V ∩ {(𝐺𝑦)}))
19 inv1 4396 . . . . . . . . . . 11 ({(𝐹𝑥)} ∩ V) = {(𝐹𝑥)}
20 incom 4199 . . . . . . . . . . . 12 (V ∩ {(𝐺𝑦)}) = ({(𝐺𝑦)} ∩ V)
21 inv1 4396 . . . . . . . . . . . 12 ({(𝐺𝑦)} ∩ V) = {(𝐺𝑦)}
2220, 21eqtri 2753 . . . . . . . . . . 11 (V ∩ {(𝐺𝑦)}) = {(𝐺𝑦)}
2319, 22xpeq12i 5706 . . . . . . . . . 10 (({(𝐹𝑥)} ∩ V) × (V ∩ {(𝐺𝑦)})) = ({(𝐹𝑥)} × {(𝐺𝑦)})
24 fvex 6909 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
25 fvex 6909 . . . . . . . . . . 11 (𝐺𝑦) ∈ V
2624, 25xpsn 7150 . . . . . . . . . 10 ({(𝐹𝑥)} × {(𝐺𝑦)}) = {⟨(𝐹𝑥), (𝐺𝑦)⟩}
2718, 23, 263eqtri 2757 . . . . . . . . 9 (({(𝐹𝑥)} × V) ∩ (V × {(𝐺𝑦)})) = {⟨(𝐹𝑥), (𝐺𝑦)⟩}
2817, 27xpeq12i 5706 . . . . . . . 8 ((({𝑥} × V) ∩ (V × {𝑦})) × (({(𝐹𝑥)} × V) ∩ (V × {(𝐺𝑦)}))) = ({⟨𝑥, 𝑦⟩} × {⟨(𝐹𝑥), (𝐺𝑦)⟩})
29 opex 5466 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
3029, 5xpsn 7150 . . . . . . . 8 ({⟨𝑥, 𝑦⟩} × {⟨(𝐹𝑥), (𝐺𝑦)⟩}) = {⟨⟨𝑥, 𝑦⟩, ⟨(𝐹𝑥), (𝐺𝑦)⟩⟩}
317, 28, 303eqtri 2757 . . . . . . 7 ((({𝑥} × V) × ({(𝐹𝑥)} × V)) ∩ ((V × {𝑦}) × (V × {(𝐺𝑦)}))) = {⟨⟨𝑥, 𝑦⟩, ⟨(𝐹𝑥), (𝐺𝑦)⟩⟩}
3231a1i 11 . . . . . 6 (𝑦𝐵 → ((({𝑥} × V) × ({(𝐹𝑥)} × V)) ∩ ((V × {𝑦}) × (V × {(𝐺𝑦)}))) = {⟨⟨𝑥, 𝑦⟩, ⟨(𝐹𝑥), (𝐺𝑦)⟩⟩})
3332iuneq2i 5018 . . . . 5 𝑦𝐵 ((({𝑥} × V) × ({(𝐹𝑥)} × V)) ∩ ((V × {𝑦}) × (V × {(𝐺𝑦)}))) = 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, ⟨(𝐹𝑥), (𝐺𝑦)⟩⟩}
3433a1i 11 . . . 4 (𝑥𝐴 𝑦𝐵 ((({𝑥} × V) × ({(𝐹𝑥)} × V)) ∩ ((V × {𝑦}) × (V × {(𝐺𝑦)}))) = 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, ⟨(𝐹𝑥), (𝐺𝑦)⟩⟩})
3534iuneq2i 5018 . . 3 𝑥𝐴 𝑦𝐵 ((({𝑥} × V) × ({(𝐹𝑥)} × V)) ∩ ((V × {𝑦}) × (V × {(𝐺𝑦)}))) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, ⟨(𝐹𝑥), (𝐺𝑦)⟩⟩}
36 2iunin 5080 . . 3 𝑥𝐴 𝑦𝐵 ((({𝑥} × V) × ({(𝐹𝑥)} × V)) ∩ ((V × {𝑦}) × (V × {(𝐺𝑦)}))) = ( 𝑥𝐴 (({𝑥} × V) × ({(𝐹𝑥)} × V)) ∩ 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})))
376, 35, 363eqtr2i 2759 . 2 (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) = ( 𝑥𝐴 (({𝑥} × V) × ({(𝐹𝑥)} × V)) ∩ 𝑦𝐵 ((V × {𝑦}) × (V × {(𝐺𝑦)})))
383, 4, 373eqtr4g 2790 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐻 = (𝑥𝐴, 𝑦𝐵 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  cin 3943  {csn 4630  cop 4636   ciun 4997   × cxp 5676  ccnv 5677  cres 5680  ccom 5682   Fn wfn 6544  cfv 6549  cmpo 7421  1st c1st 7992  2nd c2nd 7993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995
This theorem is referenced by:  fsplitfpar  8123  ex-fpar  30364
  Copyright terms: Public domain W3C validator