Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version |
Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
Ref | Expression |
---|---|
iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2 4943 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
3 | 1, 2 | mprg 3078 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-iun 4926 |
This theorem is referenced by: dfiunv2 4965 iunrab 4982 iunid 4990 iunin1 5001 2iunin 5005 resiun1 5911 resiun2 5912 dfimafn2 6833 dfmpt 7016 funiunfv 7121 fpar 7956 onovuni 8173 uniqs 8566 marypha2lem2 9195 alephlim 9823 cfsmolem 10026 ituniiun 10178 imasdsval2 17227 lpival 20516 cmpsublem 22550 txbasval 22757 uniioombllem2 24747 uniioombllem4 24750 volsup2 24769 itg1addlem5 24865 itg1climres 24879 indval2 31982 sigaclfu2 32089 measvuni 32182 fmla 33343 rabiun 35750 mblfinlem2 35815 voliunnfl 35821 cnambfre 35825 uniqsALTV 36464 trclrelexplem 41319 cotrclrcl 41350 dfcoll2 41870 hoicvr 44086 hoidmv1le 44132 hoidmvle 44138 hspmbllem2 44165 smflimlem3 44308 smflimlem4 44309 smflim 44312 dfaimafn2 44658 xpiun 45320 |
Copyright terms: Public domain | W3C validator |