![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version |
Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
Ref | Expression |
---|---|
iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2 5034 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
3 | 1, 2 | mprg 3073 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-iun 5017 |
This theorem is referenced by: dfiunv2 5058 iunrab 5075 iunidOLD 5084 iunin1 5095 2iunin 5099 resiun1 6029 resiun2 6030 dfimafn2 6985 dfmpt 7178 funiunfv 7285 fpar 8157 onovuni 8398 uniqs 8835 marypha2lem2 9505 alephlim 10136 cfsmolem 10339 ituniiun 10491 imasdsval2 17576 lpival 21357 pzriprnglem10 21524 pzriprnglem11 21525 cmpsublem 23428 txbasval 23635 uniioombllem2 25637 uniioombllem4 25640 volsup2 25659 itg1addlem5 25755 itg1climres 25769 indval2 33978 sigaclfu2 34085 measvuni 34178 fmla 35349 rabiun 37553 mblfinlem2 37618 voliunnfl 37624 cnambfre 37628 uniqsALTV 38285 trclrelexplem 43673 cotrclrcl 43704 dfcoll2 44221 hoicvr 46469 hoidmv1le 46515 hoidmvle 46521 hspmbllem2 46548 smflimlem3 46694 smflimlem4 46695 smflim 46698 dfaimafn2 47081 xpiun 47881 |
Copyright terms: Public domain | W3C validator |