| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2 4959 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mprg 3053 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3914 df-iun 4941 |
| This theorem is referenced by: dfiunv2 4982 iunrab 4999 iunin1 5018 2iunin 5022 resiun1 5947 resiun2 5948 dfimafn2 6885 dfmpt 7077 funiunfv 7182 fpar 8046 onovuni 8262 uniqs 8698 marypha2lem2 9320 alephlim 9958 cfsmolem 10161 ituniiun 10313 imasdsval2 17420 lpival 21261 pzriprnglem10 21427 pzriprnglem11 21428 cmpsublem 23314 txbasval 23521 uniioombllem2 25511 uniioombllem4 25514 volsup2 25533 itg1addlem5 25628 itg1climres 25642 indval2 32835 sigaclfu2 34134 measvuni 34227 fmla 35425 rabiun 37643 mblfinlem2 37708 voliunnfl 37714 cnambfre 37718 trclrelexplem 43814 cotrclrcl 43845 dfcoll2 44355 hoicvr 46656 hoidmv1le 46702 hoidmvle 46708 hspmbllem2 46735 smflimlem3 46881 smflimlem4 46882 smflim 46885 dfaimafn2 47276 xpiun 48268 |
| Copyright terms: Public domain | W3C validator |