| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2 4961 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mprg 3050 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3438 df-ss 3920 df-iun 4943 |
| This theorem is referenced by: dfiunv2 4984 iunrab 5001 iunidOLD 5010 iunin1 5021 2iunin 5025 resiun1 5950 resiun2 5951 dfimafn2 6886 dfmpt 7078 funiunfv 7184 fpar 8049 onovuni 8265 uniqs 8701 marypha2lem2 9326 alephlim 9961 cfsmolem 10164 ituniiun 10316 imasdsval2 17420 lpival 21231 pzriprnglem10 21397 pzriprnglem11 21398 cmpsublem 23284 txbasval 23491 uniioombllem2 25482 uniioombllem4 25485 volsup2 25504 itg1addlem5 25599 itg1climres 25613 indval2 32797 sigaclfu2 34088 measvuni 34181 fmla 35358 rabiun 37577 mblfinlem2 37642 voliunnfl 37648 cnambfre 37652 trclrelexplem 43688 cotrclrcl 43719 dfcoll2 44229 hoicvr 46533 hoidmv1le 46579 hoidmvle 46585 hspmbllem2 46612 smflimlem3 46758 smflimlem4 46759 smflim 46762 dfaimafn2 47154 xpiun 48146 |
| Copyright terms: Public domain | W3C validator |