Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version |
Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
Ref | Expression |
---|---|
iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2 4949 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
3 | 1, 2 | mprg 3080 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ∪ ciun 4930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-v 3433 df-in 3899 df-ss 3909 df-iun 4932 |
This theorem is referenced by: dfiunv2 4970 iunrab 4987 iunid 4995 iunin1 5006 2iunin 5010 resiun1 5910 resiun2 5911 dfimafn2 6830 dfmpt 7013 funiunfv 7118 fpar 7948 onovuni 8165 uniqs 8558 marypha2lem2 9183 trpred0 9489 alephlim 9834 cfsmolem 10037 ituniiun 10189 imasdsval2 17238 lpival 20527 cmpsublem 22561 txbasval 22768 uniioombllem2 24758 uniioombllem4 24761 volsup2 24780 itg1addlem5 24876 itg1climres 24890 indval2 31991 sigaclfu2 32098 measvuni 32191 fmla 33352 rabiun 35759 mblfinlem2 35824 voliunnfl 35830 cnambfre 35834 uniqsALTV 36473 trclrelexplem 41301 cotrclrcl 41332 dfcoll2 41852 hoicvr 44068 hoidmv1le 44114 hoidmvle 44120 hspmbllem2 44147 smflimlem3 44287 smflimlem4 44288 smflim 44291 dfaimafn2 44637 xpiun 45299 |
Copyright terms: Public domain | W3C validator |