| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2 4987 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mprg 3057 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-ss 3943 df-iun 4969 |
| This theorem is referenced by: dfiunv2 5011 iunrab 5028 iunidOLD 5037 iunin1 5048 2iunin 5052 resiun1 5986 resiun2 5987 dfimafn2 6941 dfmpt 7133 funiunfv 7239 fpar 8113 onovuni 8354 uniqs 8789 marypha2lem2 9446 alephlim 10079 cfsmolem 10282 ituniiun 10434 imasdsval2 17528 lpival 21283 pzriprnglem10 21449 pzriprnglem11 21450 cmpsublem 23335 txbasval 23542 uniioombllem2 25534 uniioombllem4 25537 volsup2 25556 itg1addlem5 25651 itg1climres 25665 indval2 32777 sigaclfu2 34098 measvuni 34191 fmla 35349 rabiun 37563 mblfinlem2 37628 voliunnfl 37634 cnambfre 37638 uniqsALTV 38293 trclrelexplem 43682 cotrclrcl 43713 dfcoll2 44224 hoicvr 46525 hoidmv1le 46571 hoidmvle 46577 hspmbllem2 46604 smflimlem3 46750 smflimlem4 46751 smflim 46754 dfaimafn2 47143 xpiun 48081 |
| Copyright terms: Public domain | W3C validator |