| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2 4971 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mprg 3050 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: dfiunv2 4994 iunrab 5011 iunidOLD 5020 iunin1 5031 2iunin 5035 resiun1 5959 resiun2 5960 dfimafn2 6906 dfmpt 7098 funiunfv 7204 fpar 8072 onovuni 8288 uniqs 8724 marypha2lem2 9363 alephlim 9996 cfsmolem 10199 ituniiun 10351 imasdsval2 17455 lpival 21210 pzriprnglem10 21376 pzriprnglem11 21377 cmpsublem 23262 txbasval 23469 uniioombllem2 25460 uniioombllem4 25463 volsup2 25482 itg1addlem5 25577 itg1climres 25591 indval2 32750 sigaclfu2 34084 measvuni 34177 fmla 35341 rabiun 37560 mblfinlem2 37625 voliunnfl 37631 cnambfre 37635 trclrelexplem 43673 cotrclrcl 43704 dfcoll2 44214 hoicvr 46519 hoidmv1le 46565 hoidmvle 46571 hspmbllem2 46598 smflimlem3 46744 smflimlem4 46745 smflim 46748 dfaimafn2 47140 xpiun 48119 |
| Copyright terms: Public domain | W3C validator |