MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq2i Structured version   Visualization version   GIF version

Theorem iuneq2i 4674
Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.)
Hypothesis
Ref Expression
iuneq2i.1 (𝑥𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iuneq2i 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶

Proof of Theorem iuneq2i
StepHypRef Expression
1 iuneq2 4672 . 2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
2 iuneq2i.1 . 2 (𝑥𝐴𝐵 = 𝐶)
31, 2mprg 3075 1 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145   ciun 4655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-v 3353  df-in 3731  df-ss 3738  df-iun 4657
This theorem is referenced by:  dfiunv2  4691  iunrab  4702  iunid  4710  iunin1  4720  2iunin  4723  resiun1  5558  resiun1OLD  5559  resiun2  5560  dfimafn2  6389  dfmpt  6554  funiunfv  6650  fpar  7433  onovuni  7593  uniqs  7960  marypha2lem2  8499  alephlim  9091  cfsmolem  9295  ituniiun  9447  imasdsval2  16385  lpival  19461  cmpsublem  21424  txbasval  21631  uniioombllem2  23572  uniioombllem4  23575  volsup2  23594  itg1addlem5  23688  itg1climres  23702  indval2  30417  sigaclfu2  30525  measvuni  30618  trpred0  32073  rabiun  33716  mblfinlem2  33781  voliunnfl  33787  cnambfre  33791  uniqsALTV  34445  trclrelexplem  38530  cotrclrcl  38561  hoicvr  41283  hoidmv1le  41329  hoidmvle  41335  hspmbllem2  41362  smflimlem3  41502  smflimlem4  41503  smflim  41506  dfaimafn2  41767  xpiun  42295
  Copyright terms: Public domain W3C validator