Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version |
Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
Ref | Expression |
---|---|
iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2 4940 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
3 | 1, 2 | mprg 3077 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-iun 4923 |
This theorem is referenced by: dfiunv2 4961 iunrab 4978 iunid 4986 iunin1 4997 2iunin 5001 resiun1 5900 resiun2 5901 dfimafn2 6815 dfmpt 6998 funiunfv 7103 fpar 7927 onovuni 8144 uniqs 8524 marypha2lem2 9125 trpred0 9410 alephlim 9754 cfsmolem 9957 ituniiun 10109 imasdsval2 17144 lpival 20429 cmpsublem 22458 txbasval 22665 uniioombllem2 24652 uniioombllem4 24655 volsup2 24674 itg1addlem5 24770 itg1climres 24784 indval2 31882 sigaclfu2 31989 measvuni 32082 fmla 33243 rabiun 35677 mblfinlem2 35742 voliunnfl 35748 cnambfre 35752 uniqsALTV 36391 trclrelexplem 41208 cotrclrcl 41239 dfcoll2 41759 hoicvr 43976 hoidmv1le 44022 hoidmvle 44028 hspmbllem2 44055 smflimlem3 44195 smflimlem4 44196 smflim 44199 dfaimafn2 44545 xpiun 45208 |
Copyright terms: Public domain | W3C validator |