![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version |
Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
Ref | Expression |
---|---|
iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2 5016 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
3 | 1, 2 | mprg 3065 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-v 3480 df-ss 3980 df-iun 4998 |
This theorem is referenced by: dfiunv2 5040 iunrab 5057 iunidOLD 5066 iunin1 5077 2iunin 5081 resiun1 6020 resiun2 6021 dfimafn2 6972 dfmpt 7164 funiunfv 7268 fpar 8140 onovuni 8381 uniqs 8816 marypha2lem2 9474 alephlim 10105 cfsmolem 10308 ituniiun 10460 imasdsval2 17563 lpival 21352 pzriprnglem10 21519 pzriprnglem11 21520 cmpsublem 23423 txbasval 23630 uniioombllem2 25632 uniioombllem4 25635 volsup2 25654 itg1addlem5 25750 itg1climres 25764 indval2 33995 sigaclfu2 34102 measvuni 34195 fmla 35366 rabiun 37580 mblfinlem2 37645 voliunnfl 37651 cnambfre 37655 uniqsALTV 38311 trclrelexplem 43701 cotrclrcl 43732 dfcoll2 44248 hoicvr 46504 hoidmv1le 46550 hoidmvle 46556 hspmbllem2 46583 smflimlem3 46729 smflimlem4 46730 smflim 46733 dfaimafn2 47116 xpiun 48002 |
Copyright terms: Public domain | W3C validator |