| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2 5011 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mprg 3067 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∪ ciun 4991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-v 3482 df-ss 3968 df-iun 4993 |
| This theorem is referenced by: dfiunv2 5035 iunrab 5052 iunidOLD 5061 iunin1 5072 2iunin 5076 resiun1 6017 resiun2 6018 dfimafn2 6972 dfmpt 7164 funiunfv 7268 fpar 8141 onovuni 8382 uniqs 8817 marypha2lem2 9476 alephlim 10107 cfsmolem 10310 ituniiun 10462 imasdsval2 17561 lpival 21334 pzriprnglem10 21501 pzriprnglem11 21502 cmpsublem 23407 txbasval 23614 uniioombllem2 25618 uniioombllem4 25621 volsup2 25640 itg1addlem5 25735 itg1climres 25749 indval2 32839 sigaclfu2 34122 measvuni 34215 fmla 35386 rabiun 37600 mblfinlem2 37665 voliunnfl 37671 cnambfre 37675 uniqsALTV 38330 trclrelexplem 43724 cotrclrcl 43755 dfcoll2 44271 hoicvr 46563 hoidmv1le 46609 hoidmvle 46615 hspmbllem2 46642 smflimlem3 46788 smflimlem4 46789 smflim 46792 dfaimafn2 47178 xpiun 48074 |
| Copyright terms: Public domain | W3C validator |