| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2 4975 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mprg 3050 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3449 df-ss 3931 df-iun 4957 |
| This theorem is referenced by: dfiunv2 4999 iunrab 5016 iunidOLD 5025 iunin1 5036 2iunin 5040 resiun1 5970 resiun2 5971 dfimafn2 6924 dfmpt 7116 funiunfv 7222 fpar 8095 onovuni 8311 uniqs 8747 marypha2lem2 9387 alephlim 10020 cfsmolem 10223 ituniiun 10375 imasdsval2 17479 lpival 21234 pzriprnglem10 21400 pzriprnglem11 21401 cmpsublem 23286 txbasval 23493 uniioombllem2 25484 uniioombllem4 25487 volsup2 25506 itg1addlem5 25601 itg1climres 25615 indval2 32777 sigaclfu2 34111 measvuni 34204 fmla 35368 rabiun 37587 mblfinlem2 37652 voliunnfl 37658 cnambfre 37662 trclrelexplem 43700 cotrclrcl 43731 dfcoll2 44241 hoicvr 46546 hoidmv1le 46592 hoidmvle 46598 hspmbllem2 46625 smflimlem3 46771 smflimlem4 46772 smflim 46775 dfaimafn2 47167 xpiun 48146 |
| Copyright terms: Public domain | W3C validator |