| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2 4987 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mprg 3057 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-ss 3943 df-iun 4969 |
| This theorem is referenced by: dfiunv2 5011 iunrab 5028 iunidOLD 5037 iunin1 5048 2iunin 5052 resiun1 5986 resiun2 5987 dfimafn2 6942 dfmpt 7134 funiunfv 7240 fpar 8115 onovuni 8356 uniqs 8791 marypha2lem2 9448 alephlim 10081 cfsmolem 10284 ituniiun 10436 imasdsval2 17530 lpival 21285 pzriprnglem10 21451 pzriprnglem11 21452 cmpsublem 23337 txbasval 23544 uniioombllem2 25536 uniioombllem4 25539 volsup2 25558 itg1addlem5 25653 itg1climres 25667 indval2 32831 sigaclfu2 34152 measvuni 34245 fmla 35403 rabiun 37617 mblfinlem2 37682 voliunnfl 37688 cnambfre 37692 uniqsALTV 38347 trclrelexplem 43735 cotrclrcl 43766 dfcoll2 44276 hoicvr 46577 hoidmv1le 46623 hoidmvle 46629 hspmbllem2 46656 smflimlem3 46802 smflimlem4 46803 smflim 46806 dfaimafn2 47195 xpiun 48133 |
| Copyright terms: Public domain | W3C validator |