| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2 4971 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mprg 3050 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: dfiunv2 4994 iunrab 5011 iunidOLD 5020 iunin1 5031 2iunin 5035 resiun1 5959 resiun2 5960 dfimafn2 6906 dfmpt 7098 funiunfv 7204 fpar 8072 onovuni 8288 uniqs 8724 marypha2lem2 9363 alephlim 9996 cfsmolem 10199 ituniiun 10351 imasdsval2 17455 lpival 21266 pzriprnglem10 21432 pzriprnglem11 21433 cmpsublem 23319 txbasval 23526 uniioombllem2 25517 uniioombllem4 25520 volsup2 25539 itg1addlem5 25634 itg1climres 25648 indval2 32827 sigaclfu2 34104 measvuni 34197 fmla 35361 rabiun 37580 mblfinlem2 37645 voliunnfl 37651 cnambfre 37655 trclrelexplem 43693 cotrclrcl 43724 dfcoll2 44234 hoicvr 46539 hoidmv1le 46585 hoidmvle 46591 hspmbllem2 46618 smflimlem3 46764 smflimlem4 46765 smflim 46768 dfaimafn2 47160 xpiun 48139 |
| Copyright terms: Public domain | W3C validator |