| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2 4978 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mprg 3051 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-iun 4960 |
| This theorem is referenced by: dfiunv2 5002 iunrab 5019 iunidOLD 5028 iunin1 5039 2iunin 5043 resiun1 5973 resiun2 5974 dfimafn2 6927 dfmpt 7119 funiunfv 7225 fpar 8098 onovuni 8314 uniqs 8750 marypha2lem2 9394 alephlim 10027 cfsmolem 10230 ituniiun 10382 imasdsval2 17486 lpival 21241 pzriprnglem10 21407 pzriprnglem11 21408 cmpsublem 23293 txbasval 23500 uniioombllem2 25491 uniioombllem4 25494 volsup2 25513 itg1addlem5 25608 itg1climres 25622 indval2 32784 sigaclfu2 34118 measvuni 34211 fmla 35375 rabiun 37594 mblfinlem2 37659 voliunnfl 37665 cnambfre 37669 trclrelexplem 43707 cotrclrcl 43738 dfcoll2 44248 hoicvr 46553 hoidmv1le 46599 hoidmvle 46605 hspmbllem2 46632 smflimlem3 46778 smflimlem4 46779 smflim 46782 dfaimafn2 47171 xpiun 48150 |
| Copyright terms: Public domain | W3C validator |