MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2moswapv Structured version   Visualization version   GIF version

Theorem 2moswapv 2631
Description: A condition allowing to swap an existential quantifier and at at-most-one quantifier. Version of 2moswap 2646 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 10-Apr-2004.) (Revised by Gino Giotto, 22-Aug-2023.) Factor out common proof lines with moexexvw 2630. (Revised by Wolf Lammen, 2-Oct-2023.)
Assertion
Ref Expression
2moswapv (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2moswapv
StepHypRef Expression
1 nfe1 2147 . . . 4 𝑦𝑦𝜑
21nfmov 2560 . . . 4 𝑦∃*𝑥𝑦𝜑
3 nfe1 2147 . . . . 5 𝑥𝑥(∃𝑦𝜑𝜑)
43nfmov 2560 . . . 4 𝑥∃*𝑦𝑥(∃𝑦𝜑𝜑)
51, 2, 4moexexlem 2628 . . 3 ((∃*𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ∃*𝑦𝑥(∃𝑦𝜑𝜑))
65expcom 414 . 2 (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥(∃𝑦𝜑𝜑)))
7 19.8a 2174 . . . . 5 (𝜑 → ∃𝑦𝜑)
87pm4.71ri 561 . . . 4 (𝜑 ↔ (∃𝑦𝜑𝜑))
98exbii 1850 . . 3 (∃𝑥𝜑 ↔ ∃𝑥(∃𝑦𝜑𝜑))
109mobii 2548 . 2 (∃*𝑦𝑥𝜑 ↔ ∃*𝑦𝑥(∃𝑦𝜑𝜑))
116, 10syl6ibr 251 1 (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wex 1782  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540
This theorem is referenced by:  2euswapv  2632  2rmoswap  3696
  Copyright terms: Public domain W3C validator