MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprlem1 Structured version   Visualization version   GIF version

Theorem fprlem1 8230
Description: Lemma for well-founded recursion with a partial order. Two acceptable functions are compatible. (Contributed by Scott Fenton, 11-Sep-2023.)
Hypotheses
Ref Expression
fprlem.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
fprlem.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
fprlem1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑔,,𝑢,𝑣   𝑅,𝑓,𝑥,𝑦,𝑔,,𝑢,𝑣   𝑓,𝐺,𝑥,𝑦,𝑔,,𝑢,𝑣
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑥,𝑦,𝑣,𝑢,𝑓,𝑔,)

Proof of Theorem fprlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . 5 𝑥 ∈ V
2 vex 3440 . . . . 5 𝑢 ∈ V
31, 2breldm 5847 . . . 4 (𝑥𝑔𝑢𝑥 ∈ dom 𝑔)
4 vex 3440 . . . . 5 𝑣 ∈ V
51, 4breldm 5847 . . . 4 (𝑥𝑣𝑥 ∈ dom )
6 elin 3913 . . . . 5 (𝑥 ∈ (dom 𝑔 ∩ dom ) ↔ (𝑥 ∈ dom 𝑔𝑥 ∈ dom ))
76biimpri 228 . . . 4 ((𝑥 ∈ dom 𝑔𝑥 ∈ dom ) → 𝑥 ∈ (dom 𝑔 ∩ dom ))
83, 5, 7syl2an 596 . . 3 ((𝑥𝑔𝑢𝑥𝑣) → 𝑥 ∈ (dom 𝑔 ∩ dom ))
9 id 22 . . 3 ((𝑥𝑔𝑢𝑥𝑣) → (𝑥𝑔𝑢𝑥𝑣))
102brresi 5936 . . . . 5 (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑔𝑢))
114brresi 5936 . . . . 5 (𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑣))
1210, 11anbi12i 628 . . . 4 ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑣)))
13 an4 656 . . . 4 (((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑣)) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥 ∈ (dom 𝑔 ∩ dom )) ∧ (𝑥𝑔𝑢𝑥𝑣)))
1412, 13bitri 275 . . 3 ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥 ∈ (dom 𝑔 ∩ dom )) ∧ (𝑥𝑔𝑢𝑥𝑣)))
158, 8, 9, 14syl21anbrc 1345 . 2 ((𝑥𝑔𝑢𝑥𝑣) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣))
16 inss2 4185 . . . . . . . . . 10 (dom 𝑔 ∩ dom ) ⊆ dom
17 fprlem.1 . . . . . . . . . . 11 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
1817frrlem3 8218 . . . . . . . . . 10 (𝐵 → dom 𝐴)
1916, 18sstrid 3941 . . . . . . . . 9 (𝐵 → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
2019adantl 481 . . . . . . . 8 ((𝑔𝐵𝐵) → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
2120adantl 481 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
22 simpl1 1192 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Fr 𝐴)
23 frss 5578 . . . . . . 7 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 Fr 𝐴𝑅 Fr (dom 𝑔 ∩ dom )))
2421, 22, 23sylc 65 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Fr (dom 𝑔 ∩ dom ))
25 simpl2 1193 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Po 𝐴)
26 poss 5524 . . . . . . 7 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 Po 𝐴𝑅 Po (dom 𝑔 ∩ dom )))
2721, 25, 26sylc 65 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Po (dom 𝑔 ∩ dom ))
28 simpl3 1194 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Se 𝐴)
29 sess2 5580 . . . . . . 7 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 Se 𝐴𝑅 Se (dom 𝑔 ∩ dom )))
3021, 28, 29sylc 65 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Se (dom 𝑔 ∩ dom ))
3117frrlem4 8219 . . . . . . 7 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
3231adantl 481 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
3317frrlem4 8219 . . . . . . . . 9 ((𝐵𝑔𝐵) → (( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))))
34 incom 4156 . . . . . . . . . . . 12 (dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔)
3534reseq2i 5924 . . . . . . . . . . 11 ( ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom ∩ dom 𝑔))
36 fneq12 6577 . . . . . . . . . . 11 ((( ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom ∩ dom 𝑔)) ∧ (dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔)) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ↔ ( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔)))
3735, 34, 36mp2an 692 . . . . . . . . . 10 (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ↔ ( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔))
3835fveq1i 6823 . . . . . . . . . . . 12 (( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (( ↾ (dom ∩ dom 𝑔))‘𝑎)
39 predeq2 6251 . . . . . . . . . . . . . . 15 ((dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))
4034, 39ax-mp 5 . . . . . . . . . . . . . 14 Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)
4135, 40reseq12i 5925 . . . . . . . . . . . . 13 (( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))
4241oveq2i 7357 . . . . . . . . . . . 12 (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))
4338, 42eqeq12i 2749 . . . . . . . . . . 11 ((( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) ↔ (( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))))
4434, 43raleqbii 3310 . . . . . . . . . 10 (∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) ↔ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))))
4537, 44anbi12i 628 . . . . . . . . 9 ((( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))) ↔ (( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))))
4633, 45sylibr 234 . . . . . . . 8 ((𝐵𝑔𝐵) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
4746ancoms 458 . . . . . . 7 ((𝑔𝐵𝐵) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
4847adantl 481 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
49 fpr3g 8215 . . . . . 6 (((𝑅 Fr (dom 𝑔 ∩ dom ) ∧ 𝑅 Po (dom 𝑔 ∩ dom ) ∧ 𝑅 Se (dom 𝑔 ∩ dom )) ∧ ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))) ∧ (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))) → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
5024, 27, 30, 32, 48, 49syl311anc 1386 . . . . 5 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
5150breqd 5100 . . . 4 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣))
5251biimprd 248 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣))
5317frrlem2 8217 . . . . 5 (𝑔𝐵 → Fun 𝑔)
5453ad2antrl 728 . . . 4 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → Fun 𝑔)
55 funres 6523 . . . 4 (Fun 𝑔 → Fun (𝑔 ↾ (dom 𝑔 ∩ dom )))
56 dffun2 6491 . . . . 5 (Fun (𝑔 ↾ (dom 𝑔 ∩ dom )) ↔ (Rel (𝑔 ↾ (dom 𝑔 ∩ dom )) ∧ ∀𝑥𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣)))
57 2sp 2189 . . . . . 6 (∀𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5857sps 2188 . . . . 5 (∀𝑥𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5956, 58simplbiim 504 . . . 4 (Fun (𝑔 ↾ (dom 𝑔 ∩ dom )) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
6054, 55, 593syl 18 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
6152, 60sylan2d 605 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
6215, 61syl5 34 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  cin 3896  wss 3897   class class class wbr 5089   Po wpo 5520   Fr wfr 5564   Se wse 5565  dom cdm 5614  cres 5616  Rel wrel 5619  Predcpred 6247  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346  frecscfrecs 8210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-fr 5567  df-se 5568  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349
This theorem is referenced by:  fpr2a  8232  fpr1  8233  fprfung  8239
  Copyright terms: Public domain W3C validator