Step | Hyp | Ref
| Expression |
1 | | vex 3436 |
. . . . 5
⊢ 𝑥 ∈ V |
2 | | vex 3436 |
. . . . 5
⊢ 𝑢 ∈ V |
3 | 1, 2 | breldm 5817 |
. . . 4
⊢ (𝑥𝑔𝑢 → 𝑥 ∈ dom 𝑔) |
4 | | vex 3436 |
. . . . 5
⊢ 𝑣 ∈ V |
5 | 1, 4 | breldm 5817 |
. . . 4
⊢ (𝑥ℎ𝑣 → 𝑥 ∈ dom ℎ) |
6 | | elin 3903 |
. . . . 5
⊢ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ↔ (𝑥 ∈ dom 𝑔 ∧ 𝑥 ∈ dom ℎ)) |
7 | 6 | biimpri 227 |
. . . 4
⊢ ((𝑥 ∈ dom 𝑔 ∧ 𝑥 ∈ dom ℎ) → 𝑥 ∈ (dom 𝑔 ∩ dom ℎ)) |
8 | 3, 5, 7 | syl2an 596 |
. . 3
⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑥 ∈ (dom 𝑔 ∩ dom ℎ)) |
9 | | id 22 |
. . 3
⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) |
10 | 2 | brresi 5900 |
. . . . 5
⊢ (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥𝑔𝑢)) |
11 | 4 | brresi 5900 |
. . . . 5
⊢ (𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥ℎ𝑣)) |
12 | 10, 11 | anbi12i 627 |
. . . 4
⊢ ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥ℎ𝑣))) |
13 | | an4 653 |
. . . 4
⊢ (((𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥ℎ𝑣)) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥 ∈ (dom 𝑔 ∩ dom ℎ)) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣))) |
14 | 12, 13 | bitri 274 |
. . 3
⊢ ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥 ∈ (dom 𝑔 ∩ dom ℎ)) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣))) |
15 | 8, 8, 9, 14 | syl21anbrc 1343 |
. 2
⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣)) |
16 | | inss2 4163 |
. . . . . . . . . 10
⊢ (dom
𝑔 ∩ dom ℎ) ⊆ dom ℎ |
17 | | fprlem.1 |
. . . . . . . . . . 11
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
18 | 17 | frrlem3 8104 |
. . . . . . . . . 10
⊢ (ℎ ∈ 𝐵 → dom ℎ ⊆ 𝐴) |
19 | 16, 18 | sstrid 3932 |
. . . . . . . . 9
⊢ (ℎ ∈ 𝐵 → (dom 𝑔 ∩ dom ℎ) ⊆ 𝐴) |
20 | 19 | adantl 482 |
. . . . . . . 8
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → (dom 𝑔 ∩ dom ℎ) ⊆ 𝐴) |
21 | 20 | adantl 482 |
. . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → (dom 𝑔 ∩ dom ℎ) ⊆ 𝐴) |
22 | | simpl1 1190 |
. . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → 𝑅 Fr 𝐴) |
23 | | frss 5556 |
. . . . . . 7
⊢ ((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 → (𝑅 Fr 𝐴 → 𝑅 Fr (dom 𝑔 ∩ dom ℎ))) |
24 | 21, 22, 23 | sylc 65 |
. . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → 𝑅 Fr (dom 𝑔 ∩ dom ℎ)) |
25 | | simpl2 1191 |
. . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → 𝑅 Po 𝐴) |
26 | | poss 5505 |
. . . . . . 7
⊢ ((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 → (𝑅 Po 𝐴 → 𝑅 Po (dom 𝑔 ∩ dom ℎ))) |
27 | 21, 25, 26 | sylc 65 |
. . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → 𝑅 Po (dom 𝑔 ∩ dom ℎ)) |
28 | | simpl3 1192 |
. . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → 𝑅 Se 𝐴) |
29 | | sess2 5558 |
. . . . . . 7
⊢ ((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 → (𝑅 Se 𝐴 → 𝑅 Se (dom 𝑔 ∩ dom ℎ))) |
30 | 21, 28, 29 | sylc 65 |
. . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → 𝑅 Se (dom 𝑔 ∩ dom ℎ)) |
31 | 17 | frrlem4 8105 |
. . . . . . 7
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) |
32 | 31 | adantl 482 |
. . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) |
33 | 17 | frrlem4 8105 |
. . . . . . . . 9
⊢ ((ℎ ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → ((ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ℎ ∩ dom 𝑔)((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎))))) |
34 | | incom 4135 |
. . . . . . . . . . . 12
⊢ (dom
𝑔 ∩ dom ℎ) = (dom ℎ ∩ dom 𝑔) |
35 | 34 | reseq2i 5888 |
. . . . . . . . . . 11
⊢ (ℎ ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom ℎ ∩ dom 𝑔)) |
36 | | fneq12 6529 |
. . . . . . . . . . 11
⊢ (((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom ℎ ∩ dom 𝑔)) ∧ (dom 𝑔 ∩ dom ℎ) = (dom ℎ ∩ dom 𝑔)) → ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ↔ (ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔))) |
37 | 35, 34, 36 | mp2an 689 |
. . . . . . . . . 10
⊢ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ↔ (ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔)) |
38 | 35 | fveq1i 6775 |
. . . . . . . . . . . 12
⊢ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = ((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) |
39 | | predeq2 6205 |
. . . . . . . . . . . . . . 15
⊢ ((dom
𝑔 ∩ dom ℎ) = (dom ℎ ∩ dom 𝑔) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎)) |
40 | 34, 39 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎) |
41 | 35, 40 | reseq12i 5889 |
. . . . . . . . . . . . 13
⊢ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = ((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎)) |
42 | 41 | oveq2i 7286 |
. . . . . . . . . . . 12
⊢ (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝑎𝐺((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎))) |
43 | 38, 42 | eqeq12i 2756 |
. . . . . . . . . . 11
⊢ (((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) ↔ ((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎)))) |
44 | 34, 43 | raleqbii 3163 |
. . . . . . . . . 10
⊢
(∀𝑎 ∈
(dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) ↔ ∀𝑎 ∈ (dom ℎ ∩ dom 𝑔)((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎)))) |
45 | 37, 44 | anbi12i 627 |
. . . . . . . . 9
⊢ (((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) ↔ ((ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ℎ ∩ dom 𝑔)((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎))))) |
46 | 33, 45 | sylibr 233 |
. . . . . . . 8
⊢ ((ℎ ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) |
47 | 46 | ancoms 459 |
. . . . . . 7
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) |
48 | 47 | adantl 482 |
. . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) |
49 | | fpr3g 8101 |
. . . . . 6
⊢ (((𝑅 Fr (dom 𝑔 ∩ dom ℎ) ∧ 𝑅 Po (dom 𝑔 ∩ dom ℎ) ∧ 𝑅 Se (dom 𝑔 ∩ dom ℎ)) ∧ ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) ∧ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
50 | 24, 27, 30, 32, 48, 49 | syl311anc 1383 |
. . . . 5
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
51 | 50 | breqd 5085 |
. . . 4
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣 ↔ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣)) |
52 | 51 | biimprd 247 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → (𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣 → 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣)) |
53 | 17 | frrlem2 8103 |
. . . . 5
⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) |
54 | 53 | ad2antrl 725 |
. . . 4
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → Fun 𝑔) |
55 | | funres 6476 |
. . . 4
⊢ (Fun
𝑔 → Fun (𝑔 ↾ (dom 𝑔 ∩ dom ℎ))) |
56 | | dffun2 6443 |
. . . . 5
⊢ (Fun
(𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↔ (Rel (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ∧ ∀𝑥∀𝑢∀𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣))) |
57 | | 2sp 2179 |
. . . . . 6
⊢
(∀𝑢∀𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) |
58 | 57 | sps 2178 |
. . . . 5
⊢
(∀𝑥∀𝑢∀𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) |
59 | 56, 58 | simplbiim 505 |
. . . 4
⊢ (Fun
(𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) |
60 | 54, 55, 59 | 3syl 18 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) |
61 | 52, 60 | sylan2d 605 |
. 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) |
62 | 15, 61 | syl5 34 |
1
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |